

AoPS Community

National Olympiad Second Round 2000

www.artofproblemsolving.com/community/c5429 by mestavk, xeroxia

Day 1 December 8th

- **1** A circle with center O and a point A in this circle are given. Let P_B is the intersection point of [AB] and the internal bisector of $\angle AOB$ where B is a point on the circle such that B doesn't lie on the line OA, Find the locus of P_B as B varies.
- **2** Let define $P_n(x) = x^{n-1} + x^{n-2} + x^{n-3} + \cdots + x + 1$ for every positive integer *n*. Prove that for every positive integer *a* one can find a positive integer *n* and polynomials R(x) and Q(x) with integer coefficients such that

$$P_n(x) = [1 + ax + x^2 R(x)]Q(x).$$

3 Let f(x, y) and g(x, y) be defined for every $x, y \in \{1, 2, ..., 2000\}$ and take different values for at most n ordered pairs of (x, y). For every function pairs f(x, y), g(x, y), when $x \notin X$ and $y \notin Y$, it is always possible to find 1000-element sets $X, Y \subset \{1, 2, ..., 2000\}$ such that f(x, y) = g(x, y). Determine the largest integer that n can take.

Day 2 December 9th

1	Let p be a prime number. $T(x)$ is a polynomial with integer coefficients and degree from the
	set $\{0, 1,, p-1\}$ and such that $T(n) \equiv T(m)(modp)$ for some integers m and n implies that
	$m \equiv n(modp)$. Determine the maximum possible value of degree of $T(x)$

- **2** A positive real number a and two rays wich intersect at point A are given. Show that all the circles which pass through A and intersect these rays at points B and C where |AB|+|AC|=a have a common point other than A.
- **3** Find all continuous functions $f : [0,1] \to [0,1]$ for which there exists a positive integer n such that $f^n(x) = x$ for $x \in [0,1]$ where $f^0(x) = x$ and $f^{k+1} = f(f^k(x))$ for every positive integer k.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.