Art of Problem Solving

AoPS Community

National Olympiad Second Round 2000

www.artofproblemsolving.com/community/c5429
by mestavk, xeroxia

Day 1 December 8th

1 A circle with center O and a point A in this circle are given. Let P_{B} is the intersection point of $[A B]$ and the internal bisector of $\angle A O B$ where B is a point on the circle such that B doesn't lie on the line $O A$, Find the locus of P_{B} as B varies.

2 Let define $P_{n}(x)=x^{n-1}+x^{n-2}+x^{n-3}+\cdots+x+1$ for every positive integer n. Prove that for every positive integer a one can find a positive integer n and polynomials $R(x)$ and $Q(x)$ with integer coefficients such that

$$
P_{n}(x)=\left[1+a x+x^{2} R(x)\right] Q(x) .
$$

3 Let $f(x, y)$ and $g(x, y)$ be defined for every $x, y \in\{1,2, \ldots, 2000\}$ and take different values for at most n ordered pairs of (x, y). For every function pairs $f(x, y), g(x, y)$, when $x \notin X$ and $y \notin Y$, it is always possible to find 1000 -element sets $X, Y \subset\{1,2, \ldots, 2000\}$ such that $f(x, y)=$ $g(x, y)$. Determine the largest integer that n can take.

Day 2 December 9th

1 Let p be a prime number. $T(x)$ is a polynomial with integer coefficients and degree from the set $\{0,1, \ldots, p-1\}$ and such that $T(n) \equiv T(m)(\bmod p)$ for some integers m and n implies that $m \equiv n(\bmod p)$. Determine the maximum possible value of degree of $T(x)$

2 A positive real number a and two rays wich intersect at point A are given. Show that all the circles which pass through A and intersect these rays at points B and C where $|A B|+|A C|=a$ have a common point other than A.

3 Find all continuous functions $f:[0,1] \rightarrow[0,1]$ for which there exists a positive integer n such that $f^{n}(x)=x$ for $x \in[0,1]$ where $f^{0}(x)=x$ and $f^{k+1}=f\left(f^{k}(x)\right)$ for every positive integer k.

