Art of Problem Solving

AoPS Community

National Olympiad Second Round 2001

www.artofproblemsolving.com/community/c5430
by mestavk

Day 1 December 22nd

1 Let $A B C D$ be a convex quadrilateral. The perpendicular bisectors of the sides [AD] and [BC] intersect at a point P inside the quadrilateral and the perpendicular bisectors of the sides $[A B]$ and $[C D]$ also intersect at a point Q inside the quadrilateral. Show that, if $\angle A P D=\angle B P C$ then $\angle A Q B=\angle C Q D$
$2 \quad\left(x_{n}\right)_{-\infty<n<\infty}$ is a sequence of real numbers which satisfies $x_{n+1}=\frac{x_{n}^{2}+10}{7}$ for every $n \in \mathbb{Z}$. If there exist a real upperbound for this sequence, find all the values x_{0} can take.

3 One wants to distribute n same sized cakes between k people equally by cutting every cake at most once. If the number of positive divisors of n is denoted as $d(n)$, show that the number of different values of k which makes such distribution possible is $n+d(n)$

Day 2 December 23rd

1 Find all ordered triples of positive integers (x, y, z) such that

$$
3^{x}+11^{y}=z^{2}
$$

2 Two nonperpendicular lines throught the point A and a point F on one of these lines different from A are given. Let P_{G} be the intersection point of tangent lines at G and F to the circle through the point A, F and G where G is a point on the given line different from the line $F A$. What is the locus of P_{G} as G varies.

3 We wish to color the cells of a $n \times n$ chessboard with k different colors such that for every $i \in\{1,2, \ldots, n\}$, the $2 n-1$ cells on i. row and i. column have all different colors.
a) Prove that for $n=2001$ and $k=4001$, such coloring is not possible.
b) Show that for $n=2^{m}-1$ and $k=2^{m+1}-1$, such coloring is possible.

