Art of Problem Solving

AoPS Community

National Olympiad Second Round 2005

www.artofproblemsolving.com/community/c5434
by WakeUp

1 For all positive real numbers a, b, c, d prove the inequality

$$
\sqrt{a^{4}+c^{4}}+\sqrt{a^{4}+d^{4}}+\sqrt{b^{4}+c^{4}}+\sqrt{b^{4}+d^{4}} \geq 2 \sqrt{2}(a d+b c)
$$

2 In a triangle $A B C$ with $A B<A C<B C$, the perpendicular bisectors of $A C$ and $B C$ intersect $B C$ and $A C$ at K and L, respectively. Let O, O_{1}, and O_{2} be the circumcentres of triangles $A B C$, $C K L$, and $O A B$, respectively. Prove that $O C O_{1} O_{2}$ is a parallelogram.

3 Some of the $n+1$ cities in a country (including the capital city) are connected by one-way or two-way airlines. No two cities are connected by both a one-way airline and a two-way airline, but there may be more than one two-way airline between two cities. If d_{A} denotes the number of airlines from a city A, then $d_{A} \leq n$ for any city A other than the capital city and $d_{A}+d_{B} \leq n$ for any two cities A and B other than the capital city which are not connected by a two-way airline. Every airline has a return, possibly consisting of several connected flights. Find the largest possible number of two-way airlines and all configurations of airlines for which this largest number is attained.
$4 \quad$ Find all triples of nonnegative integers (m, n, k) satisfying $5^{m}+7^{n}=k^{3}$.
5 If a, b, c are the sides of a triangle and r the inradius of the triangle, prove that

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \leq \frac{1}{4 r^{2}}
$$

6 Suppose that a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of integers has the following property. For all n large enough (i.e. $n \geq N$ for some N), a_{n} equals the number of indices $i, 1 \leq i<n$, such that $a_{i}+i \geq n$. Find the maximum possible number of integers which occur infinitely many times in the sequence.

