

AoPS Community

National Olympiad Second Round 2005

www.artofproblemsolving.com/community/c5434 by WakeUp

1 For all positive real numbers *a*, *b*, *c*, *d* prove the inequality

 $\sqrt{a^4 + c^4} + \sqrt{a^4 + d^4} + \sqrt{b^4 + c^4} + \sqrt{b^4 + d^4} \ge 2\sqrt{2}(ad + bc)$

- 2 In a triangle ABC with AB < AC < BC, the perpendicular bisectors of AC and BC intersect BC and AC at K and L, respectively. Let O, O_1 , and O_2 be the circumcentres of triangles ABC, CKL, and OAB, respectively. Prove that OCO_1O_2 is a parallelogram.
- **3** Some of the n + 1 cities in a country (including the capital city) are connected by one-way or two-way airlines. No two cities are connected by both a one-way airline and a two-way airline, but there may be more than one two-way airline between two cities. If d_A denotes the number of airlines from a city A, then $d_A \le n$ for any city A other than the capital city and $d_A + d_B \le n$ for any two cities A and B other than the capital city which are not connected by a two-way airline. Every airline has a return, possibly consisting of several connected flights. Find the largest possible number of two-way airlines and all configurations of airlines for which this largest number is attained.
- **4** Find all triples of nonnegative integers (m, n, k) satisfying $5^m + 7^n = k^3$.
- **5** If *a*, *b*, *c* are the sides of a triangle and *r* the inradius of the triangle, prove that

$$\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \le \frac{1}{4r^2}$$

6 Suppose that a sequence $(a_n)_{n=1}^{\infty}$ of integers has the following property: For all n large enough (i.e. $n \ge N$ for some N), a_n equals the number of indices $i, 1 \le i < n$, such that $a_i + i \ge n$. Find the maximum possible number of integers which occur infinitely many times in the sequence.