AoPS Community

National Olympiad Second Round 2006
www.artofproblemsolving.com/community/c5435
by Umut Varolgunes

Day 1

1 Points P and Q on side $A B$ of a convex quadrilateral $A B C D$ are given such that $A P=B Q$. The circumcircles of triangles $A P D$ and $B Q D$ meet again at K and those of $A P C$ and $B Q C$ meet again at L. Show that the points D, C, K, L lie on a circle.

2 There are 2006 students and 14 teachers in a school. Each student knows at least one teacher (knowing is a symmetric relation). Suppose that, for each pair of a student and a teacher who know each other, the ratio of the number of the students whom the teacher knows to that of the teachers whom the student knows is at least t. Find the maximum possible value of t.

3 Find all positive integers n for which all coefficients of polynomial $P(x)$ are divisible by 7 , where

$$
P(x)=\left(x^{2}+x+1\right)^{n}-\left(x^{2}+1\right)^{n}-(x+1)^{n}-\left(x^{2}+x\right)^{n}+x^{2 n}+x^{n}+1 .
$$

Day 2

$1 \quad x_{1}, \ldots, x_{n}$ are positive reals such that their sum and their squares' sum are equal to t. Prove that $\sum_{i \neq j} \frac{x_{i}}{x_{j}} \geq \frac{(n-1)^{2} \cdot t}{t-1}$
$2 A B C$ be a triangle. Its incircle touches the sides $C B, A C, A B$ respectively at N_{A}, N_{B}, N_{C}. The orthic triangle of $A B C$ is $H_{A} H_{B} H_{C}$ with H_{A}, H_{B}, H_{C} are respectively on $B C, A C, A B$. The incenter of $A H_{C} H_{B}$ is $I_{A} ; I_{B}$ and I_{C} were defined similarly.
Prove that the hexagon $I_{A} N_{B} I_{C} N_{A} I_{B} N_{C}$ has all sides equal.
3 Find all the triangles such that its side lenghts, area and its angles' measures (in degrees) are rational.

