Art of Problem Solving

AoPS Community

2007 Turkey MO (2nd round)

National Olympiad Second Round 2007

www.artofproblemsolving.com/community/c5436
by mestavk, bvarici, efoski1687

Day 1 December 8th

1 In an acute triangle $A B C$, the circle with diameter $A C$ intersects $A B$ and $A C$ at K and L different from A and C respectively. The circumcircle of $A B C$ intersects the line $C K$ at the point F different from C and the line $A L$ at the point D different from A. A point E is choosen on the smaller arc of $A C$ of the circumcircle of $A B C$. Let N be the intersection of the lines $B E$ and $A C$. If $A F^{2}+B D^{2}+C E^{2}=A E^{2}+C D^{2}+B F^{2}$ prove that $\angle K N B=\angle B N L$.

2 Some unit squares of 2007×2007 square board are colored. Let (i, j) be a unit square belonging to the i th line and j th column and $S_{i, j}$ be the set of all colored unit squares (x, y) satisfying $x \leq i, y \leq j$. At the first step in each colored unit square (i, j) we write the number of colored unit squares in $S_{i, j}$. In each step, in each colored unit square (i, j) we write the sum of all numbers written in $S_{i, j}$ in the previous step. Prove that after finite number of steps, all numbers in the colored unit squares will be odd.

3 If a, b, c are three positive real numbers such that $a+b+c=3$, prove that $\frac{a^{2}+3 b^{2}}{a b^{2}(4-a b)}+\frac{b^{2}+3 c^{2}}{b c^{2}(4-a b)}+$ $\frac{c^{2}+3 a^{2}}{c a^{2}(4-c a)} \geq 4$

Day 2 December 9th
$1 \quad$ Let $k>1$ be an integer, $p=6 k+1$ be a prime number and $m=2^{p}-1$.
Prove that $\frac{2^{m-1}-1}{127 m}$ is an integer.
2 Let $A B C$ be a triangle with $\angle B=90$. The incircle of $A B C$ touches the side $B C$ at D. The incenters of triangles $A B D$ and $A D C$ are X and Z, respectively. The lines $X Z$ and $A D$ are intersecting at the point $K . X Z$ and circumcircle of $A B C$ are intersecting at U and V. Let M be the midpoint of line segment $[U V] . A D$ intersects the circumcircle of $A B C$ at Y other than A. Prove that $|C Y|=2|M K|$.

3 In a country between each pair of cities there is at most one direct road. There is a connection (using one or more roads) between any two cities even after the elimination of any given city and all roads incident to this city. We say that the city A can be k-directionally connected to the city B, if : we can orient at most k roads such that after arbitrary orientation of remaining roads for any fixed road l (directly connecting two cities) there is a path passing through roads in the direction of their orientation starting at A, passing through l and ending at B and visiting each
city at most once. Suppose that in a country with n cities, any two cities can be k-directionally connected. What is the minimal value of k ?

