Art of Problem Solving

AoPS Community

National Olympiad Second Round 2008

www.artofproblemsolving.com/community/c5437
by sinankaral53, mashel, Umut Varolgunes

Day 1

1 Given an acute angled triangle $A B C, O$ is the circumcenter and H is the orthocenter.Let A_{1}, B_{1}, C_{1} be the midpoints of the sides $B C, A C$ and $A B$ respectively. Rays [$H A_{1},\left[H B_{1},\left[H C_{1}\right.\right.$ cut the circumcircle of $A B C$ at A_{0}, B_{0} and C_{0} respectively. Prove that O, H and H_{0} are collinear if H_{0} is the orthocenter of $A_{0} B_{0} C_{0}$
$2 \quad a-)$ Find all prime p such that $\frac{7^{p-1}-1}{p}$ is a perfect square
$b-)$ Find all prime p such that $\frac{11^{p-1}-1}{p}$ is a perfect square
3 Let a.b.c be positive reals such that their sum is 1 . Prove that $\frac{a^{2} b^{2}}{c^{3}\left(a^{2}-a b+b^{2}\right)}+\frac{b^{2} c^{2}}{a^{3}\left(b^{2}-b c+c^{2}\right)}+\frac{a^{2} c^{2}}{b^{3}\left(a^{2}-a c+c^{2}\right)} \geq \frac{3}{a b+b c+a c}$

Day 2

$1 \quad f: \mathbb{N} \times \mathbb{Z} \rightarrow \mathbb{Z}$ satisfy the given conditions
a) $f(0,0)=1, f(0,1)=1$,
b) $\forall k \notin\{0,1\} f(0, k)=0$ and
c) $\forall n \geq 1$ and $k, f(n, k)=f(n-1, k)+f(n-1, k-2 n)$
find the sum $\sum_{k=0}^{\substack{2009 \\ 2}} f(2008, k)$

2 A circle Γ and a line ℓ is given in a plane such that ℓ doesn't cut Γ.Determine the intersection set of the circles has $[A B]$ as diameter for all pairs of $\{A, B\}$ (lie on ℓ) and satisfy $P, Q, R, S \in \Gamma$ such that $P Q \cap R S=\{A\}$ and $P S \cap Q R=\{B\}$

3 There is a connected network with 2008 computers, in which any of the two cycles don't have any common vertex. A hacker and a administrator are playing a game in this network. On the 1 st move hacker selects one computer and hacks it, on the $2 n d$ move administrator selects another computer and protects it. Then on every $2 k+1$ th move hacker hacks one more computer(if he can) which wasn't protected by the administrator and is directly connected (with an edge) to a computer which was hacked by the hacker before and on every $2 k+2 t h$ move administrator protects one more computer(if he can) which wasn't hacked by the hacker and
is directly connected (with an edge) to a computer which was protected by the administrator before for every $k>0$. If both of them can't make move, the game ends. Determine the maximum number of computers which the hacker can guarantee to hack at the end of the game.

