AoPS Community

National Olympiad Second Round 2011

www.artofproblemsolving.com/community/c5440
by erkamseker, emregirgin35
$1 \quad n \geq 2$ and $E=\{1,2, \ldots, n\} . A_{1}, A_{2}, \ldots, A_{k}$ are subsets of E, such that for all $1 \leq i<j \leq k$ Exactly one of $A_{i} \cap A_{j}, A_{i}^{\prime} \cap A_{j}, A_{i} \cap A_{j}^{\prime}, A_{i}^{\prime} \cap A_{j}^{\prime}$ is empty set. What is the maximum possible k ?

2 Let $A B C$ be a triangle $D \in[B C]$ (different than A and B). E is the midpoint of [CD]. $F \in[A C]$ such that $\widehat{F E C}=90$ and $|A F| \cdot|B C|=|A C| \cdot|E C|$. Circumcircle of $A D C$ intersect $[A B]$ at G different than A.Prove that tangent to circumcircle of $A G F$ at F is touch circumcircle of $B G E$ too.
$3 x, y, z$ positive real numbers such that $x y z=1$
Prove that: $\frac{1}{x+y^{20}+z^{11}}+\frac{1}{y+z^{20}+x^{11}}+\frac{1}{z+x^{20}+y^{11}} \leq 1$
$4 \quad a_{1}=5$ and $a_{n+1}=a_{n}^{3}-2 a_{n}^{2}+2$ for all $n \geq 1$. p is a prime such that $p=3(\bmod 4)$ and $p \mid a_{2011}+1$. Show that $p=3$.
$5 \quad$ Let M and N be two regular polygonic area.Define $K(M, N)$ as the midpoints of segments $[A B]$ such that A belong to M and B belong to N. Find all situations of M and N such that $K(M, N)$ is a regualr polygonic area too.
$6 \quad$ Let A and B two countries which inlude exactly 2011 cities. There is exactly one flight from a city of A to a city of B and there is no domestic flights (flights are bi-directional). For every city X (doesn't matter from A or from B), there exist at most 19 different airline such that airline have a flight from X to the another city.For an integer k, (it doesn't matter how flights arranged) we can say that there exists at least k cities such that it is possible to trip from one of these k cities to another with same airline. So find the maximum value of k.

