Art of Problem Solving

AoPS Community

2013 Turkey MO (2nd round)

National Olympiad Second Round 2013

www.artofproblemsolving.com/community/c5442
by crazyfehmy

Day 1 November 23rd

1 The circle ω_{1} with diameter $[A B]$ and the circle ω_{2} with center A intersects at points C and D. Let E be a point on the circle ω_{2}, which is outside ω_{1} and at the same side as C with respect to the line $A B$. Let the second point of intersection of the line $B E$ with ω_{2} be F. For a point K on the circle ω_{1} which is on the same side as A with respect to the diameter of ω_{1} passing through C we have $2 \cdot C K \cdot A C=C E \cdot A B$. Let the second point of intersection of the line $K F$ with ω_{1} be L. Show that the symmetric of the point D with respect to the line $B E$ is on the circumcircle of the triangle LFC.

2 Let m be a positive integer.
a. Show that there exist infinitely many positive integers k such that $1+k m^{3}$ is a perfect cube and $1+k n^{3}$ is not a perfect cube for all positive integers $n<m$.
b. Let $m=p^{r}$ where $p \equiv 2(\bmod 3)$ is a prime number and r is a positive integer. Find all numbers k satisfying the condition in part a.

3 Let G be a simple, undirected, connected graph with 100 vertices and 2013 edges. It is given that there exist two vertices A and B such that it is not possible to reach A from B using one or two edges. We color all edges using n colors, such that for all pairs of vertices, there exists a way connecting them with a single color. Find the maximum value of n.

Day 2 November 24th

$1 \quad$ Find all positive integers m and n satisfying $2^{n}+n=m!$.
2 Find the maximum value of M for which for all positive real numbers a, b, c we have

$$
a^{3}+b^{3}+c^{3}-3 a b c \geq M\left(a b^{2}+b c^{2}+c a^{2}-3 a b c\right)
$$

3 Let n be a positive integer and $P_{1}, P_{2}, \ldots, P_{n}$ be different points on the plane such that distances between them are all integers. Furthermore, we know that the distances $P_{i} P_{1}, P_{i} P_{2}, \ldots, P_{i} P_{n}$ forms the same sequence for all $i=1,2, \ldots, n$ when these numbers are arranged in a nondecreasing order. Find all possible values of n.

