

AoPS Community

2013 Turkey MO (2nd round)

National Olympiad Second Round 2013

www.artofproblemsolving.com/community/c5442 by crazyfehmy

Day 1 November 23rd

- 1 The circle ω_1 with diameter [AB] and the circle ω_2 with center A intersects at points C and D. Let E be a point on the circle ω_2 , which is outside ω_1 and at the same side as C with respect to the line AB. Let the second point of intersection of the line BE with ω_2 be F. For a point K on the circle ω_1 which is on the same side as A with respect to the diameter of ω_1 passing through C we have $2 \cdot CK \cdot AC = CE \cdot AB$. Let the second point of intersection of the line KF with ω_1 be L. Show that the symmetric of the point D with respect to the line BE is on the circumcircle of the triangle LFC.
- 2 Let m be a positive integer.
 a. Show that there exist infinitely many positive integers k such that 1 + km³ is a perfect cube and 1 + kn³ is not a perfect cube for all positive integers n < m.
 b. Let m = p^r where p ≡ 2 (mod 3) is a prime number and r is a positive integer. Find all numbers k satisfying the condition in part a.
- **3** Let *G* be a simple, undirected, connected graph with 100 vertices and 2013 edges. It is given that there exist two vertices *A* and *B* such that it is not possible to reach *A* from *B* using one or two edges. We color all edges using *n* colors, such that for all pairs of vertices, there exists a way connecting them with a single color. Find the maximum value of *n*.

Day 2 November 24th

- **1** Find all positive integers m and n satisfying $2^n + n = m!$.
- 2 Find the maximum value of M for which for all positive real numbers a, b, c we have

$$a^{3} + b^{3} + c^{3} - 3abc \ge M(ab^{2} + bc^{2} + ca^{2} - 3abc)$$

3 Let *n* be a positive integer and P_1, P_2, \ldots, P_n be different points on the plane such that distances between them are all integers. Furthermore, we know that the distances $P_iP_1, P_iP_2, \ldots, P_iP_n$ forms the same sequence for all $i = 1, 2, \ldots, n$ when these numbers are arranged in a non-decreasing order. Find all possible values of *n*.

🟟 AoPS Online 🟟 AoPS Academy 🔯 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.