AoPS Community

Turkey Team Selection Test 1990

www.artofproblemsolving.com/community/c5445
by matematikolimpiyati

- May 6th

1 The circles k_{1}, k_{2}, k_{3} with radii $(a>c>b) a, b, c$ are tangent to line d at A, B, C, respectively. k_{1} is tangent to k_{2}, and k_{2} is tangent to k_{3}. The tangent line to k_{3} at E is parallel to d, and it meets k_{1} at D. The line perpendicular to d at A meets line $E B$ at F. Prove that $A D=A F$.

2 For real numbers x_{i}, the statement

$$
x_{1}+x_{2}+x_{3}=0 \Rightarrow x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \leq 0
$$

is always true. (Prove!)
For which $n \geq 4$ integers, the statement

$$
x_{1}+x_{2}+\cdots+x_{n}=0 \Rightarrow x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1} \leq 0
$$

is always true. Justify your answer.
3 Let n be an odd integer greater than $11 ; k \in \mathbb{N}, k \geq 6, n=2 k-1$.
We define

$$
d(x, y)=\left|\left\{i \in\{1,2, \ldots, n\} \mid x_{i} \neq y_{i}\right\}\right|
$$

for $T=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in\{0,1\}, i=1,2, \ldots, n\right\}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in$ T.
Show that $n=23$ if T has a subset S satisfying
$-|S|=2^{k}$
-For each $x \in T$, there exists exacly one $y \in S$ such that $d(x, y) \leq 3$
4 Let $A B C D$ be a convex quadrilateral such that

$$
\begin{array}{cl}
E, F \in[A B], & A E=E F=F B \\
G, H \in[B C], & B G=G H=H C \\
K, L \in[C D], & C K=K L=L D \\
M, N \in[D A], & D M=M N=N A
\end{array}
$$

Let

$$
\begin{gathered}
{[N G] \cap[L E]=\{P\},[N G] \cap[K F]=\{Q\},} \\
{[M H] \cap[K F]=\{R\},[M H] \cap[L E]=\{S\}}
\end{gathered}
$$

Prove that $-\operatorname{Area}(A B C D)=9 \cdot \operatorname{Area}(P Q R S)-N P=P Q=Q G$

5 Let b_{m} be numbers of factors 2 of the number m ! (that is, $2^{b_{m}} \mid m$! and $2^{b_{m}+1} \nmid m!$). Find the least m such that $m-b_{m}=1990$.

6 Let $k \geq 2$ and $n_{1}, \ldots, n_{k} \in \mathbf{Z}^{+}$. If $n_{2}\left|\left(2^{n_{1}}-1\right), n_{3}\right|\left(2^{n_{2}}-1\right), \ldots, n_{k}\left|\left(2^{n_{k-1}}-1\right), n_{1}\right|\left(2^{n_{k}}-1\right)$, show that $n_{1}=\cdots=n_{k}=1$.

