AoPS Community

Turkey Team Selection Test 1993

www.artofproblemsolving.com/community/c5448
by GlassBead

1 Show that there exists an infinite arithmetic progression of natural numbers such that the first term is 16 and the number of positive divisors of each term is divisible by 5 . Of all such sequences, find the one with the smallest possible common difference.

2 Let M be the circumcenter of an acute-angled triangle $A B C$. The circumcircle of triangle $B M A$ intersects $B C$ at P and $A C$ at Q. Show that $C M \perp P Q$.

3 Let $\left(b_{n}\right)$ be a sequence such that $b_{n} \geq 0$ and $b_{n+1}^{2} \geq \frac{b_{1}^{2}}{1^{3}}+\cdots+\frac{b_{n}^{2}}{n^{3}}$ for all $n \geq 1$. Prove that there exists a natural number K such that

$$
\sum_{n=1}^{K} \frac{b_{n+1}}{b_{1}+b_{2}+\cdots+b_{n}} \geq \frac{1993}{1000}
$$

4 Some towns are connected by roads, with at most one road between any two towns. Let v be the number of towns and e be the number of roads. Prove that
(a) if $e<v-1$, then there are two towns such that one cannot travel between them;
(b) if $2 e>(v-1)(v-2)$, then one can travel between any two towns.
$5 \quad$ Points E and C are chosen on a semicircle with diameter $A B$ and center O such that $O E \perp A B$ and the intersection point D of $A C$ and $O E$ is inside the semicircle. Find all values of $\angle C A B$ for which the quadrilateral $O B C D$ is tangent.

6 Determine all functions $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$that satisfy:

$$
f\left(x+\frac{y}{x}\right)=f(x)+f\left(\frac{y}{x}\right)+2 y \text { for all } x, y \in \mathbb{Q}^{+}
$$

