Problem 1 Find all functions $f:(0,+\infty) \rightarrow(0,+\infty)$ that satisfy $(i) f(x f(y))=y f(x), \forall x, y>0,(i i)$ $\lim _{x \rightarrow+\infty} f(x)=0$.

Problem 2 A boa of size k is a graph with $k+1$ vertices $\{0,1, \ldots, k-1, k\}$ and edges only between the vertices i and $i+1$ for $0 \leq i<k$. The boa is place in a graph G through a injection of graphs. (This is an injective function form the vertices of the boa to the vertices of the graph in such a way that if there is an edge between the vertices x and y in the boa then there must be an edge between $f(x)$ and $f(y)$ in G).
The Boa can move in the graph G using to type of movement each time. If the boa is initially on the vertices $f(0), f(1), \ldots, f(k)$ then it moves in one of the following ways:
(i) It choose v a neighbor of $f(k)$ such that $v \notin\{f(0), f(1), \ldots, f(k-1)\}$ and the boa now moves to $f(0), f(1), \ldots, f(k)$ with $f^{\prime}(k)=v$ and $f^{\prime}(i)=f(i+1)$ for $0 \leq i<k$, or
(ii) It choose v a neighbor of $f(0)$ such that $v \notin\{f(1), f(2), \ldots, f(k)\}$ and the boa now moves to $f(0), f(1), \ldots, f(k)$ with $f^{\prime}(0)=v$ and $f^{\prime}(i)=f^{\prime}(i-1)$ for $0<i \leq k$.
Prove that if G is a connected graph with diameter d, then it is possible to put a size $\lceil d / 2\rceil$ boa in G such that the boa can reach any vertex of G.

