

AoPS Community

2016 CIIM

VIII Iberoamerican Interuniversitary Mathematics Competition - Manaus, Brasil

www.artofproblemsolving.com/community/c544982 by Ozc

Problem 1 Find all functions $f : (0, +\infty) \to (0, +\infty)$ that satisfy $(i) f(xf(y)) = yf(x), \forall x, y > 0, (ii)$ $\lim_{x \to +\infty} f(x) = 0.$

Problem 2 A boa of size k is a graph with k + 1 vertices $\{0, 1, ..., k - 1, k\}$ and edges only between the vertices i and i + 1 for $0 \le i < k$. The boa is place in a graph G through a injection of graphs. (This is an injective function form the vertices of the boa to the vertices of the graph in such a way that if there is an edge between the vertices x and y in the boa then there must be an edge between f(x) and f(y) in G).

The Boa can move in the graph G using to type of movement each time. If the boa is initially on the vertices $f(0), f(1), \ldots, f(k)$ then it moves in one of the following ways:

(i) It choose v a neighbor of f(k) such that $v \notin \{f(0), f(1), \dots, f(k-1)\}$ and the boa now moves to $f(0), f(1), \dots, f(k)$ with f'(k) = v and f'(i) = f(i+1) for $0 \le i < k$, or

(ii) It choose v a neighbor of f(0) such that $v \notin \{f(1), f(2), \ldots, f(k)\}$ and the boa now moves to $f(0), f(1), \ldots, f(k)$ with f'(0) = v and f'(i) = f'(i-1) for $0 < i \le k$.

Prove that if G is a connected graph with diameter d, then it is possible to put a size $\lceil d/2 \rceil$ boa in G such that the boa can reach any vertex of G.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱