Art of Problem Solving

AoPS Community

Turkey Team Selection Test 1995

www.artofproblemsolving.com/community/c5450
by GlassBead

Day 1

1 Given real numbers $b \geq a>0$, find all solutions of the system

$$
\begin{gathered}
x_{1}^{2}+2 a x_{1}+b^{2}=x_{2}, \\
x_{2}^{2}+2 a x_{2}+b^{2}=x_{3}, \\
\ldots \ldots \ldots \\
x_{n}^{2}+2 a x_{n}+b^{2}=x_{1} .
\end{gathered}
$$

2 Let n be a positive integer. Find the number of permutations σ of the set $\{1,2, \ldots, n\}$ such that $\sigma(j) \geq j$ holds for exactly two values of j.

3 Let D be a point on the small arc $A C$ of the circumcircle of an equilateral triangle $A B C$, different from A and C. Let E and F be the projections of D onto $B C$ and $A C$ respectively. Find the locus of the intersection point of $E F$ and $O D$, where O is the center of $A B C$.

Day 2

1 In a convex quadrilateral $A B C D$ it is given that $\angle C A B=40^{\circ}, \angle C A D=30^{\circ}, \angle D B A=75^{\circ}$, and $\angle D B C=25^{\circ}$. Find $\angle B D C$.

2 Let $n \in \mathbb{N}$ be given. Prove that the following two conditions are equivalent:
(i) $n \mid a^{n}-a$ for any positive integer a;
(ii) For any prime divisor p of $n, p^{2} \nmid n$ and $p-1 \mid n-1$.

3 The sequence $\left\{x_{n}\right\}$ of real numbers is defined by

$$
x_{1}=1 \quad \text { and } \quad x_{n+1}=x_{n}+\sqrt[3]{x_{n}} \quad \text { for } n \geq 1 .
$$

Show that there exist real numbers a, b such that $\lim _{n \rightarrow \infty} \frac{x_{n}}{a n^{b}}=1$.

