

AoPS Community

Turkey Team Selection Test 1996

www.artofproblemsolving.com/community/c5451 by mestavk

Day 1 March 23rd

1	Let $\prod_{n=1}^{1996} (1 + nx^{3^n}) = 1 + a_1 x^{k_1} + a_2 x^{k_2} + \dots + a_m x^{k_m}$
	where $a_1, a_1,, a_m$ are nonzero and $k_1 < k_2 < < k_m$. Find a_{1996} .
2	In a parallelogram $ABCD$ with $\angle A < 90$, the circle with diameter AC intersects the lines CB and CD again at E and F , and the tangent to this circle at A meets the line BD at P . Prove that the points P , E , F are collinear.
3	If $0 = x_1 < x_2 < \ldots < x_{2n+1} = 1$ are real numbers with $x_{i+1} - x_i \le h$ for $1 \le i \le 2n$, show that $\frac{1-h}{2} < \sum_{i=1}^n x_{2i}(x_{2i+1} - x_{2i-1}) \le \frac{1+h}{2}$
Day 2	March 24th
1	The diagonals AC and BD of a convex quadrilateral $ABCD$ with $S_{ABC} = S_{ADC}$ intersect at <i>E</i> . The lines through <i>E</i> parallel to <i>AD</i> , <i>DC</i> , <i>CB</i> , <i>BA</i>
	meet AB, BC, CD, DA at K, L, M, N, respectively. Compute the ratio $\frac{S_{KLMN}}{S_{ABC}}$
2	meet <i>AB</i> , <i>BC</i> , <i>CD</i> , <i>DA</i> at <i>K</i> , <i>L</i> , <i>M</i> , <i>N</i> , respectively. Compute the ratio $\frac{S_{KLMN}}{S_{ABC}}$ Find the maximum number of pairwise disjoint sets of the form $S_{a,b} = \{n^2 + an + b n \in \mathbb{Z}\}, a, b \in \mathbb{Z}.$

Art of Problem Solving is an ACS WASC Accredited School.