

AoPS Community

Turkey Team Selection Test 1997

www.artofproblemsolving.com/community/c5452 by mestavk

Day 1

1	In a triangle ABC with a right angle at A , H is the foot of the altitude from A . Prove that the sum of the inradii of the triangles ABC , ABH , and AHC is equal to AH .
2	The sequences (a_n) , (b_n) are dened by $a_1 = \alpha$, $b_1 = \beta$, $a_{n+1} = \alpha a_n - \beta b_n$, $b_{n+1} = \beta a_n + \alpha b_n$ for all $n > 0$. How many pairs (α, β) of real numbers are there such that $a_{1997} = b_1$ and $b_{1997} = a_1$?
3	In a football league, whenever a player is transferred from a team X with x players to a team Y with y players, the federation is paid $y - x$ billions liras by Y if $y \ge x$, while the federation pays $x - y$ billions liras to X if $x > y$. A player is allowed to change as many teams as he wishes during a season. Suppose that a season started with 18 teams of 20 players each. At the end of the season, 12 of the teams turn out to have again 20 players, while the remaining 6 teams end up with 16, 16, 21, 22, 22, 23 players, respectively. What is the maximal amount the federation may have won during the season?
Day	2
1	A convex $ABCDE$ is inscribed in a unit circle, AE being its diameter. If $AB = a$, $BC = b$, $CD = c$, $DE = d$ and $ab = cd = \frac{1}{4}$, compute $AC + CE$ in terms of a, b, c, d .
2	Show that for each prime $p \ge 7$, there exist a positive integer n and integers x_i, y_i $(i = 1,, n)$, not divisible by p , such that $x_i^2 + y_i^2 \equiv x_{i+1}^2 \pmod{p}$ where $x_{n+1} = x_1$
3	If x_1, x_2, \ldots, x_n are positive real numbers with $x_1^2 + x_2^2 + \ldots + x_n^2 = 1$, nd the minimum value of $\sum_{i=1}^n \frac{x_i^5}{x_1 + x_2 + \ldots + x_n - x_i}$.

AoPS Online 🔯 AoPS Academy 🙋 AoPS & CADEMY

Art of Problem Solving is an ACS WASC Accredited School.