Art of Problem Solving

AoPS Community

Turkey Team Selection Test 1997

www.artofproblemsolving.com/community/c5452
by mestavk

Day 1

1 In a triangle $A B C$ with a right angle at A, H is the foot of the altitude from A. Prove that the sum of the inradii of the triangles $A B C, A B H$, and $A H C$ is equal to $A H$.

2 The sequences $\left(a_{n}\right),\left(b_{n}\right)$ are dened by $a_{1}=\alpha, b_{1}=\beta, a_{n+1}=\alpha a_{n}-\beta b_{n}, b_{n+1}=\beta a_{n}+\alpha b_{n}$ for all $n>0$. How many pairs (α, β) of real numbers are there such that $a_{1997}=b_{1}$ and $b_{1997}=a_{1}$?

3 In a football league, whenever a player is transferred from a team X with x players to a team Y with y players, the federation is paid $y-x$ billions liras by Y if $y \geq x$, while the federation pays $x-y$ billions liras to X if $x>y$. A player is allowed to change as many teams as he wishes during a season. Suppose that a season started with 18 teams of 20 players each. At the end of the season, 12 of the teams turn out to have again 20 players, while the remaining 6 teams end up with $16,16,21,22,22,23$ players, respectively. What is the maximal amount the federation may have won during the season?

Day 2

1 A convex $A B C D E$ is inscribed in a unit circle, $A E$ being its diameter. If $A B=a, B C=b$, $C D=c, D E=d$ and $a b=c d=\frac{1}{4}$, compute $A C+C E$ in terms of a, b, c, d.

2 Show that for each prime $p \geq 7$, there exist a positive integer n and integers $x_{i}, y_{i}(i=1, \ldots, n)$, not divisible by p, such that $x_{i}^{2}+y_{i}^{2} \equiv x_{i+1}^{2}(\bmod p)$ where $x_{n+1}=x_{1}$

3 If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers with $x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}=1$, nd the minimum value of $\sum_{i=1}^{n} \frac{x_{i}^{5}}{x_{1}+x_{2}+\ldots+x_{n}-x_{i}}$.

