

AoPS Community

Turkey Team Selection Test 1999

www.artofproblemsolving.com/community/c5454 by xeroxia

Day 1

1 Let $m \le n$ be positive integers and p be a prime. Let p-expansions of m and n be

$$m = a_0 + a_1 p + \dots + a_r p^r$$
$$n = b_0 + b_1 p + \dots + b_s p^s$$

respectively, where $a_r, b_s \neq 0$, for all $i \in \{0, 1, ..., r\}$ and for all $j \in \{0, 1, ..., s\}$, we have $0 \leq a_i, b_j \leq p-1$.

If $a_i \leq b_i$ for all $i \in \{0, 1, ..., r\}$, we write $m \prec_p n$. Prove that

$$p \nmid \binom{n}{m} \Leftrightarrow m \prec_p n$$

- **2** Let *L* and *N* be the mid-points of the diagonals [AC] and [BD] of the cyclic quadrilateral *ABCD*, respectively. If *BD* is the bisector of the angle *ANC*, then prove that *AC* is the bisector of the angle *BLD*.
- **3** Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that the set

$$\left\{\frac{f(x)}{x}: x \neq 0 \text{ and } x \in \mathbb{R}\right\}$$

f(x - 1 - f(x)) = f(x) - x - 1

is finite, and for all $x \in \mathbb{R}$

Day 2

- 1 Let the area and the perimeter of a cyclic quadrilateral C be A_C and P_C , respectively. If the area and the perimeter of the quadrilateral which is tangent to the circumcircle of C at the vertices of C are A_T and P_T , respectively, prove that $\frac{A_C}{A_T} \ge \left(\frac{P_C}{P_T}\right)^2$.
- **2** Each of *A*, *B*, *C*, *D*, *E*, and *F* knows a piece of gossip. They communicate by telephone via a central switchboard, which can connect only two of them at a time. During a conversation, each side tells the other everything he or she knows at that point. Determine the minimum number of calls for everyone to know all six pieces of gossip.

AoPS Community

1999 Turkey Team Selection Test

3 Prove that the plane is not a union of the inner regions of finitely many parabolas. (The outer region of a parabola is the union of the lines not intersecting the parabola. The inner region of a parabola is the set of points of the plane that do not belong to the outer region of the parabola)

Act of Problem Solving is an ACS WASC Accredited School.