Art of Problem Solving

AoPS Community

Turkey Team Selection Test 1999

www.artofproblemsolving.com/community/c5454
by xeroxia

Day 1

$1 \quad$ Let $m \leq n$ be positive integers and p be a prime. Let p-expansions of m and n be

$$
\begin{aligned}
m & =a_{0}+a_{1} p+\cdots+a_{r} p^{r} \\
n & =b_{0}+b_{1} p+\cdots+b_{s} p^{s}
\end{aligned}
$$

respectively, where $a_{r}, b_{s} \neq 0$, for all $i \in\{0,1, \ldots, r\}$ and for all $j \in\{0,1, \ldots, s\}$, we have $0 \leq a_{i}, b_{j} \leq p-1$.
If $a_{i} \leq b_{i}$ for all $i \in\{0,1, \ldots, r\}$, we write $m \prec_{p} n$. Prove that

$$
p \nmid\binom{n}{m} \Leftrightarrow m \prec_{p} n
$$

2 Let L and N be the mid-points of the diagonals $[A C]$ and $[B D]$ of the cyclic quadrilateral $A B C D$, respectively. If $B D$ is the bisector of the angle $A N C$, then prove that $A C$ is the bisector of the angle $B L D$.

3 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the set

$$
\left\{\frac{f(x)}{x}: x \neq 0 \text { and } x \in \mathbb{R}\right\}
$$

is finite, and for all $x \in \mathbb{R}$

$$
f(x-1-f(x))=f(x)-x-1
$$

Day 2

1 Let the area and the perimeter of a cyclic quadrilateral C be A_{C} and P_{C}, respectively. If the area and the perimeter of the quadrilateral which is tangent to the circumcircle of C at the vertices of C are A_{T} and P_{T}, respectively, prove that $\frac{A_{C}}{A_{T}} \geq\left(\frac{P_{C}}{P_{T}}\right)^{2}$.

2 Each of A, B, C, D, E, and F knows a piece of gossip. They communicate by telephone via a central switchboard, which can connect only two of them at a time. During a conversation, each side tells the other everything he or she knows at that point. Determine the minimum number of calls for everyone to know all six pieces of gossip.

3 Prove that the plane is not a union of the inner regions of finitely many parabolas. (The outer region of a parabola is the union of the lines not intersecting the parabola. The inner region of a parabola is the set of points of the plane that do not belong to the outer region of the parabola)

