

AoPS Community

Turkey Team Selection Test 2000

www.artofproblemsolving.com/community/c5455 by Potla

Day 1

1	(a) Prove that for every positive integer n , the number of ordered pairs (x, y) of integers sat- isfying $x^2 - xy + y^2 = n$ is divisible by 3. (b) Find all ordered pairs of integers satisfying $x^2 - xy + y^2 = 727$.
2	In a triangle ABC , the internal and external bisectors of the angle A intersect the line BC at D and E respectively. The line AC meets the circle with diameter DE again at F. The tangent line to the circle ABF at A meets the circle with diameter DE again at G. Show that $AF = AG$.
3	Let $P(x) = x + 1$ and $Q(x) = x^2 + 1$. Consider all sequences $\langle (x_k, y_k) \rangle_{k \in \mathbb{N}}$ such that $(x_1, y_1) = (1,3)$ and (x_{k+1}, y_{k+1}) is either $(P(x_k), Q(y_k))$ or $(Q(x_k), P(y_k))$ for each k . We say that a positive integer n is nice if $x_n = y_n$ holds in at least one of these sequences. Find all nice numbers.
Day 2	2
1	Show that any triangular prism of innite length can be cut by a plane such that the resulting intersection is an equilateral triangle.
2	Points M , N , K , L are taken on the sides AB , BC , CD , DA of a rhombus $ABCD$, respectively, in such a way that $MN \parallel LK$ and the distance between MN and KL is equal to the height of $ABCD$. Show that the circumcircles of the triangles ALM and NCK intersect each other, while those of LDK and MBN do not.
3	Suppose $f: \mathbb{R} \to \mathbb{R}$ is a function such that
	$ f(x+y) - f(x) - f(y) \le 1$ for all $x, y \in \mathbb{R}$.
	Prove that there is a function $q: \mathbb{R} \to \mathbb{R}$ such that $ f(x) - q(x) < 1$ and $q(x+y) = q(x) + q(y)$

Prove that there is a function $g : \mathbb{R} \to \mathbb{R}$ such that $|f(x) - g(x)| \le 1$ and g(x + y) = g(x) + g(y) for all $x, y \in \mathbb{R}$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱