AoPS Community

Turkey Team Selection Test 2000

www.artofproblemsolving.com/community/c5455
by Potla

Day 1

1 (a) Prove that for every positive integer n, the number of ordered pairs (x, y) of integers satisfying $x^{2}-x y+y^{2}=n$ is divisible by 3. (b) Find all ordered pairs of integers satisfying $x^{2}-x y+y^{2}=727$.

2 In a triangle $A B C$, the internal and external bisectors of the angle A intersect the line $B C$ at D and E respectively. The line $A C$ meets the circle with diameter $D E$ again at F. The tangent line to the circle $A B F$ at A meets the circle with diameter $D E$ again at G. Show that $A F=A G$.

3 Let $P(x)=x+1$ and $Q(x)=x^{2}+1$. Consider all sequences $\left\langle\left(x_{k}, y_{k}\right)\right\rangle_{k \in \mathbb{N}}$ such that $\left(x_{1}, y_{1}\right)=$ $(1,3)$ and $\left(x_{k+1}, y_{k+1}\right)$ is either $\left(P\left(x_{k}\right), Q\left(y_{k}\right)\right)$ or $\left(Q\left(x_{k}\right), P\left(y_{k}\right)\right)$ for each k. We say that a positive integer n is nice if $x_{n}=y_{n}$ holds in at least one of these sequences. Find all nice numbers.

Day 2

1 Show that any triangular prism of innite length can be cut by a plane such that the resulting intersection is an equilateral triangle.

2 Points M, N, K, L are taken on the sides $A B, B C, C D, D A$ of a rhombus $A B C D$, respectively, in such a way that $M N \| L K$ and the distance between $M N$ and $K L$ is equal to the height of $A B C D$. Show that the circumcircles of the triangles $A L M$ and $N C K$ intersect each other, while those of $L D K$ and $M B N$ do not.

3 Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that

$$
|f(x+y)-f(x)-f(y)| \leq 1 \text { for all } x, y \in \mathbb{R}
$$

Prove that there is a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $|f(x)-g(x)| \leq 1$ and $g(x+y)=g(x)+g(y)$ for all $x, y \in \mathbb{R}$.

