AoPS Community

Turkey Team Selection Test 2001

www.artofproblemsolving.com/community/c5456
by xeroxia

Day 1 March 31st

1 Each one of 2001 children chooses a positive integer and writes down his number and names of some of other 2000 children to his notebook. Let A_{c} be the sum of the numbers chosen by the children who appeared in the notebook of the child c. Let B_{c} be the sum of the numbers chosen by the children who wrote the name of the child c into their notebooks. The number $N_{c}=A_{c}-B_{c}$ is assigned to the child c. Determine whether all of the numbers assigned to the children could be positive.

2 A circle touches to diameter $A B$ of a unit circle with center O at T where $O T>1$. These circles intersect at two different points C and D. The circle through O, D, and C meet the line $A B$ at P different from O. Show that

$$
|P A| \cdot|P B|=\frac{|P T|^{2}}{|O T|^{2}}
$$

3 For all integers x, y, z, let

$$
S(x, y, z)=(x y-x z, y z-y x, z x-z y) .
$$

Prove that for all integers a, b and c with $a b c>1$, and for every integer $n \geq n_{0}$, there exists integers n_{0} and k with $0<k \leq a b c$ such that

$$
S^{n+k}(a, b, c) \equiv S^{n}(a, b, c) \quad(\bmod a b c)
$$

($S^{1}=S$ and for every integer $m \geq 1, S^{m+1}=S \circ S^{m} .\left(u_{1}, u_{2}, u_{3}\right) \equiv\left(v_{1}, v_{2}, v_{3}\right)(\bmod M) \Longleftrightarrow$ $\left.u_{i} \equiv v_{i}(\bmod M)(i=1,2,3).\right)$

Day 2 April 1st
1 Find all ordered pairs of integers (x, y) such that $5^{x}=1+4 y+y^{4}$.
2 Let H be the intersection of the altitudes of an acute triangle $A B C$ and D be the midpoint of $[A C]$. Show that $D H$ passes through one of the intersection point of the circumcircle of $A B C$ and the circle with diameter $[B H]$.

3 Show that there is no continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every real number x

$$
f(x-f(x))=\frac{x}{2}
$$

