Art of Problem Solving

AoPS Community

Turkey Team Selection Test 2002

www.artofproblemsolving.com/community/c5457
by xeroxia

Day 1 April 6th

1 If $a b(a+b)$ divides $a^{2}+a b+b^{2}$ for different integers a and b, prove that

$$
|a-b|>\sqrt[3]{a b}
$$

2 In a triangle $A B C$, the angle bisector of $\widehat{A B C}$ meets $[A C]$ at D, and the angle bisector of $\widehat{B C A}$ meets $[A B]$ at E. Let X be the intersection of the lines $B D$ and $C E$ where $|B X|=\sqrt{3}|X D|$ ve $|X E|=(\sqrt{3}-1)|X C|$. Find the angles of triangle $A B C$.

3 A positive integer n and real numbers a_{1}, \ldots, a_{n} are given. Show that there exists integers m and k such that

$$
\left|\sum_{i=1}^{m} a_{i}-\sum_{i=m+1}^{n} a_{i}\right| \leq\left|a_{k}\right| .
$$

Day 2 April 7th
1 If a function f defined on all real numbers has at least two centers of symmetry, show that this function can be written as sum of a linear function and a periodic function.
[For every real number x, if there is a real number a such that $f(a-x)+f(a+x)=2 f(a)$, the point $(a, f(a))$ is called a center of symmetry of the function f.]

2 Two circles are internally tangent at a point A. Let C be a point on the smaller circle other than A. The tangent line to the smaller circle at C meets the bigger circle at D and E; and the line $A C$ meets the bigger circle at A and P. Show that the line $P E$ is tangent to the circle through A, C, and E.

3 Consider $2 n+1$ points in space, no four of which are coplanar where $n>1$. Each line segment connecting any two of these points is either colored red, white or blue. A subset M of these points is called a connected monochromatic subset, if for each $a, b \in M$, there are points $a=$ $x_{0}, x_{1}, \ldots, x_{l}=b$ that belong to M such that the line segments $x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{l-1} x_{1}$ are all have the same color. No matter how the points are colored, if there always exists a connected monochromatic k-subset, find the largest value of $k .(l>1)$

