

AoPS Community

Turkey Team Selection Test 2003

www.artofproblemsolving.com/community/c5458 by xeroxia

Day 1

1 Let $M = \{(a, b, c, d) | a, b, c, d \in \{1, 2, 3, 4\}$ and $abcd > 1\}$. For each $n \in \{1, 2, ..., 254\}$, the sequence (a_1, b_1, c_1, d_1) , (a_2, b_2, c_2, d_2) , ..., $(a_{255}, b_{255}, c_{255}, d_{255})$ contains each element of M exactly once and the equality

 $|a_{n+1} - a_n| + |b_{n+1} - b_n| + |c_{n+1} - c_n| + |d_{n+1} - d_n| = 1$

holds. If $c_1 = d_1 = 1$, find all possible values of the pair (a_1, b_1) .

2 Let *K* be the intersection of the diagonals of a convex quadrilateral *ABCD*. Let $L \in [AD]$, $M \in [AC]$, $N \in [BC]$ such that $KL \parallel AB$, $LM \parallel DC$, $MN \parallel AB$. Show that

$$\frac{Area(KLMN)}{Area(ABCD)} < \frac{8}{27}.$$

3 Is there an arithmetic sequence with

a. 2003

b. infinitely many

terms such that each term is a power of a natural number with a degree greater than 1?

Day 2

4 Find the least

a. positive real number

b. positive integer

t such that the equation $(x^2 + y^2)^2 + 2tx(x^2 + y^2) = t^2y^2$ has a solution where x, y are positive integers.

5 Let *A* be a point on a circle with center *O* and *B* be the midpoint of [OA]. Let *C* and *D* be points on the circle such that they lie on the same side of the line *OA* and $\widehat{CBO} = \widehat{DBA}$. Show that the reflection of the midpoint of [CD] over *B* lies on the circle.

AoPS Community

2003 Turkey Team Selection Test

6 For all positive integers n, let p(n) be the number of non-decreasing sequences of positive integers such that for each sequence, the sum of all terms of the sequence is equal to n. Prove that

$$\frac{1 + p(1) + p(2) + \dots + p(n-1)}{p(n)} \le \sqrt{2n}.$$

Act of Problem Solving is an ACS WASC Accredited School.