Art of Problem Solving

AoPS Community

2005 Turkey Team Selection Test

Turkey Team Selection Test 2005

www.artofproblemsolving.com/community/c5460
by mestavk, efoski1687

Day 1 April 2nd
1 Find all functions $f: \mathbb{R}_{0}^{+} \mapsto \mathbb{R}_{0}^{+}$satisfying the conditions $4 f(x) \geq 3 x$ and $f(4 f(x)-3 x)=x$ for all $x \geq 0$.

2 Let N be midpoint of the side $A B$ of a triangle $A B C$ with $\angle A$ greater than $\angle B$. Let D be a point on the ray $A C$ such that $C D=B C$ and P be a point on the ray $D N$ which lies on the same side of $B C$ as A and satisfies the condition $\angle P B C=\angle A$. The lines $P C$ and $A B$ intersect at E, and the lines $B C$ and $D P$ intersect at T. Determine the value of $\frac{B C}{T C}-\frac{E A}{E B}$.

3 Initially the numbers 1 through 2005 are marked. A finite set of marked consecutive integers is called a block if it is not contained in any larger set of marked consecutive integers. In each step we select a set of marked integers which does not contain the first or last element of any block, unmark the selected integers, and mark the same number of consecutive integers starting with the integer two greater than the largest marked integer. What is the minimum number of steps necessary to obtain 2005 single integer blocks?

Day 2 April 3rd
1 Show that for any integer $n \geq 2$ and all integers $a_{1}, a_{2}, \ldots, a_{n}$ the product $\prod_{i<j}\left(a_{j}-a_{i}\right)$ is divisible by $\prod_{i<j}(j-i)$.

2 Let $A B C$ be a triangle such that $\angle A=90$ and $\angle B<\angle C$. The tangent at A to its circumcircle Γ meets the line $B C$ at D. Let E be the reflection of A across $B C, X$ the foot of the perpendicular from A to $B E$, and Y be the midpoint of $A X$. Let the line $B Y$ meet Γ again at Z. Prove that the line $B D$ is tangent to circumcircle of triangle $A D Z$.

3 We are given 5040 balls in k different colors, where the number of balls of each color is the same. The balls are put into 2520 bags so that each bag contains two balls of different colors. Find the smallest k such that, however the balls are distributed into the bags, we can arrange the bags around a circle so that no two balls of the same color are in two neighboring bags.

