AoPS Community

Turkey Team Selection Test 2006

www.artofproblemsolving.com/community/c5461
by Valentin Vornicu, silouan

Day 1

1 Find the maximum value for the area of a heptagon with all vertices on a circle and two diagonals perpendicular.

2 How many ways are there to divide a $2 \times n$ rectangle into rectangles having integral sides, where n is a positive integer?

3 If x, y, z are positive real numbers and $x y+y z+z x=1$ prove that

$$
\frac{27}{4}(x+y)(y+z)(z+x) \geq(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x})^{2} \geq 6 \sqrt{3} .
$$

Day 2

1 For all integers $n \geq 1$ we define $x_{n+1}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$, where x_{1} is a positive integer. Find the least x_{1} such that 2006 divides x_{2006}.

2 From a point Q on a circle with diameter $A B$ different from A and B, we draw a perpendicular to $A B, Q H$, where H lies on $A B$. The intersection points of the circle of diameter $A B$ and the circle of center Q and radius $Q H$ are C and D. Prove that $C D$ bisects $Q H$.

3 Each one of 2006 students makes a list with 12 schools among 2006. If we take any 6 students, there are two schools which at least one of them is included in each of 6 lists. A list which includes at least one school from all lists is a good list.
a) Prove that we can always find a good list with 12 elements, whatever the lists are;
b) Prove that students can make lists such that no shorter list is good.

