Art of Problem Solving

AoPS Community

Turkey Team Selection Test 2007

www.artofproblemsolving.com/community/c5462
by Litlle 1000t, April

Day 1

1 Find the number of the connected graphs with 6 vertices. (Vertices are considered to be different)

2 Two different points A and B and a circle ω that passes through A and B are given. P is a variable point on ω (different from A and B). M is a point such that $M P$ is the bisector of the angle $\angle A P B$ (M lies outside of ω) and $M P=A P+B P$. Find the geometrical locus of M.

3 Let a, b, c be positive reals such that their sum is 1 . Prove that

$$
\frac{1}{a b+2 c^{2}+2 c}+\frac{1}{b c+2 a^{2}+2 a}+\frac{1}{a c+2 b^{2}+2 b} \geq \frac{1}{a b+b c+a c} .
$$

Day 2

1 Let $A B C$ is an acute angled triangle and let A_{1}, B_{1}, C_{1} are points respectively on $B C, C A, A B$ such that $\triangle A B C$ is similar to $\triangle A_{1} B_{1} C_{1}$.
Prove that orthocenter of $A_{1} B_{1} C_{1}$ coincides with circumcenter of $A B C$.
2 A number n is satisfying the conditions below
i) n is a positive odd integer;
ii) there are some odd integers such that their squares' sum is equal to n^{4}.

Find all such numbers.
3 We write 1 or -1 on each unit square of a 2007×2007 board. Find the number of writings such that for every square on the board the absolute value of the sum of numbers on the square is less then or equal to 1 .

