Art of Problem Solving

AoPS Community

Turkey Team Selection Test 2008
www.artofproblemsolving.com/community/c5463
by Umut Varolgunes, pohoatza

Day 1

1 In an $A B C$ triangle such that $m(\angle B)>m(\angle C)$, the internal and external bisectors of vertice A intersects $B C$ respectively at points D and E. P is a variable point on $E A$ such that A is on $[E P] . D P$ intersects $A C$ at M and $M E$ intersects $A D$ at Q. Prove that all $P Q$ lines have a common point as P varies.

2 A graph has 30 vertices, 105 edges and 4822 unordered edge pairs whose endpoints are disjoint. Find the maximal possible difference of degrees of two vertices in this graph.

3 The equation $x^{3}-a x^{2}+b x-c=0$ has three (not necessarily different) positive real roots. Find the minimal possible value of $\frac{1+a+b+c}{3+2 a+b}-\frac{c}{b}$.

Day 2

4 The sequence $\left(x_{n}\right)$ is defined as; $x_{1}=a, x_{2}=b$ and for all positive integer $n, x_{n+2}=2008 x_{n+1}-$ x_{n}. Prove that there are some positive integers a, b such that $1+2006 x_{n+1} x_{n}$ is a perfect square for all positive integer n.
$5 \quad D$ is a point on the edge $B C$ of triangle $A B C$ such that $A D=\frac{B D^{2}}{A B+A D}=\frac{C D^{2}}{A C+A D}$. E is a point such that D is on $[A E]$ and $C D=\frac{D E^{2}}{C D+C E}$. Prove that $A E=A B+A C$.
$6 \quad$ There are n voters and m candidates. Every voter makes a certain arrangement list of all candidates (there is one person in every place $1,2, \ldots m$) and votes for the first k people in his/her list. The candidates with most votes are selected and say them winners. A poll profile is all of this n lists.
If a is a candidate, R and R^{\prime} are two poll profiles. R^{\prime} is $a-\operatorname{good}$ for R if and only if for every voter; the people which in a worse position than a in R is also in a worse position than a in R^{\prime}. We say positive integer k is monotone if and only if for every R poll profile and every winner a for R poll profile is also a winner for all $a-\operatorname{good} R^{\prime}$ poll profiles. Prove that k is monotone if and only if $k>\frac{m(n-1)}{n}$.

