

AoPS Community

2009 Turkey Team Selection Test

Turkey Team Selection Test 2009

www.artofproblemsolving.com/community/c5464 by orl

I all $f: Q^+ \to Z$ functions that satisfy $f\left(\frac{1}{x}\right) = f(x)$ and $(x+1)f(x-1) = xf(x)$ for all onal numbers that are bigger than 1.
drilateral <i>ABCD</i> has an inscribed circle which centered at <i>O</i> with radius <i>r</i> . <i>AB</i> intersects at <i>P</i> ; <i>AD</i> intersects <i>BC</i> at <i>Q</i> and the diagonals <i>AC</i> and <i>BD</i> intersects each other at <i>K</i> . If distance from <i>O</i> to the line <i>PQ</i> is <i>k</i> , prove that $OK \cdot k = r^2$.
nin a group of 2009 people, every two people has exactly one common friend. Find the least be of the difference between the person with maximum number of friends and the person in minimum number of friends.
which p prime numbers, there is an integer root of the polynominal $1+p+Q(x^1)\cdot Q(x^2)\ldots Q(x^{2p})$ that $Q(x)$ is a polynominal with integer coefficients?
triangle <i>ABC</i> incircle touches the sides <i>AB</i> , <i>AC</i> and <i>BC</i> at <i>C</i> ₁ , <i>B</i> ₁ and <i>A</i> ₁ respectively. we that $\sqrt{\frac{AB_1}{AB}} + \sqrt{\frac{BC_1}{BC}} + \sqrt{\frac{CA_1}{CA}} \le \frac{3}{\sqrt{2}}$ is true.
class of $n \ge 4$ some students are friends. In this class any $n - 1$ students can be seated round table such that every student is sitting next to a friend of him in both sides, but n

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱