Art of Problem Solving

AoPS Community

Turkey Team Selection Test 2012

www.artofproblemsolving.com/community/c5467
by crazyfehmy

Day 1

1 Let $A=\{1,2, \ldots, 2012\}, B=\{1,2, \ldots, 19\}$ and S be the set of all subsets of A. Find the number of functions $f: S \rightarrow B$ satisfying $f\left(A_{1} \cap A_{2}\right)=\min \left\{f\left(A_{1}\right), f\left(A_{2}\right)\right\}$ for all $A_{1}, A_{2} \in S$.

2 In an acute triangle $A B C$, let D be a point on the side $B C$. Let $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}$ be the midpoints of the line segments $A D, A B, A C, B D, C D$, respectively and $O_{1}, O_{2}, O_{3}, O_{4}$ be the circumcenters of triangles $A B D, A C D, M_{1} M_{2} M_{4}, M_{1} M_{3} M_{5}$, respectively. If S and T are midpoints of the line segments $A O_{1}$ and $A O_{2}$, respectively, prove that ${S O_{3} O_{4} T \text { is an isosceles }}^{2}$, trapezoid.

3 For all positive real numbers a, b, c satisfying $a b+b c+c a \leq 1$, prove that

$$
a+b+c+\sqrt{3} \geq 8 a b c\left(\frac{1}{a^{2}+1}+\frac{1}{b^{2}+1}+\frac{1}{c^{2}+1}\right)
$$

Day 2

1 In a triangle $A B C$, incircle touches the sides $B C, C A, A B$ at D, E, F, respectively. A circle ω passing through A and tangent to line $B C$ at D intersects the line segments $B F$ and $C E$ at K and L, respectively. The line passing through E and parallel to $D L$ intersects the line passing through F and parallel to $D K$ at P. If $R_{1}, R_{2}, R_{3}, R_{4}$ denotes the circumradius of the triangles $A F D, A E D, F P D, E P D$, respectively, prove that $R_{1} R_{4}=R_{2} R_{3}$.

2 A positive integer n is called good if for all positive integers a which can be written as $a=$ $n^{2} \sum_{i=1}^{n} x_{i}{ }^{2}$ where $x_{1}, x_{2}, \ldots, x_{n}$ are integers, it is possible to express a as $a=\sum_{i=1}^{n} y_{i}{ }^{2}$ where $y_{1}, y_{2}, \ldots, y_{n}$ are integers with none of them is divisible by n. Find all good numbers.

3 Two players A and B play a game on a $1 \times m$ board, using 2012 pieces numbered from 1 to 2012. At each turn, A chooses a piece and B places it to an empty place. After k turns, if all pieces are placed on the board increasingly, then B wins, otherwise A wins. For which values of (m, k) pairs can B guarantee to win?

Day 3

1 Let $S_{r}(n)=1^{r}+2^{r}+\cdots+n^{r}$ where n is a positive integer and r is a rational number. If $S_{a}(n)=\left(S_{b}(n)\right)^{c}$ for all positive integers n where a, b are positive rationals and c is positive integer then we call (a, b, c) as nice triple. Find all nice triples.

2 In a plane, the six different points $A, B, C, A^{\prime}, B^{\prime}, C^{\prime}$ are given such that triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are congruent, i.e. $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}, C A=C^{\prime} A^{\prime}$. Let G be the centroid of $A B C$ and A_{1} be an intersection point of the circle with diameter $A A^{\prime}$ and the circle with center A^{\prime} and passing through G. Define B_{1} and C_{1} similarly. Prove that

$$
A A_{1}^{2}+B B_{1}^{2}+C C_{1}^{2} \leq A B^{2}+B C^{2}+C A^{2}
$$

$3 \quad$ Let \mathbb{Z}^{+}and \mathbb{P} denote the set of positive integers and the set of prime numbers, respectively. A set A is called S - proper where $A, S \subset \mathbb{Z}^{+}$if there exists a positive integer N such that for all $a \in A$ and for all $0 \leq b<a$ there exist $s_{1}, s_{2}, \ldots, s_{n} \in S$ satisfying $b \equiv s_{1}+s_{2}+\cdots+s_{n}$ $(\bmod a)$ and $1 \leq n \leq N$.
Find a subset S of \mathbb{Z}^{+}for which \mathbb{P} is S - proper but \mathbb{Z}^{+}is not.

