Art of Problem Solving

AoPS Community

Turkey Team Selection Test 2013

www.artofproblemsolving.com/community/c5468
by xeroxia

Day 1 March 30th
1 Let $\phi(n)$ be the number of positive integers less than n that are relatively prime to n, where n is a positive integer. Find all pairs of positive integers (m, n) such that

$$
2^{n}+(n-\phi(n)-1)!=n^{m}+1 .
$$

2 We put pebbles on some unit squares of a 2013×2013 chessboard such that every unit square contains at most one pebble. Determine the minimum number of pebbles on the chessboard, if each 19×19 square formed by unit squares contains at least 21 pebbles.

3 Let O be the circumcenter and I be the incenter of an acute triangle $A B C$ with $m(\widehat{B}) \neq m(\widehat{C})$. Let D, E, F be the midpoints of the sides $[B C],[C A],[A B]$, respectively. Let T be the foot of perpendicular from I to $[A B]$. Let P be the circumcenter of the triangle $D E F$ and Q be the midpoint of $[O I]$. If A, P, Q are collinear, prove that

$$
\frac{|A O|}{|O D|}-\frac{|B C|}{|A T|}=4 .
$$

Day 2 March 31st
$1 \quad$ Find all pairs of integers (m, n) such that $m^{6}=n^{n+1}+n-1$.
2 Let the incircle of the triangle $A B C$ touch $[B C]$ at D and I be the incenter of the triangle. Let T be midpoint of $[I D]$. Let the perpendicular from I to $A D$ meet $A B$ and $A C$ at K and L, respectively. Let the perpendicular from T to $A D$ meet $A B$ and $A C$ at M and N, respectively. Show that $|K M| \cdot|L N|=|B M| \cdot|C N|$.

3 For all real numbers x, y, z such that $-2 \leq x, y, z \leq 2$ and $x^{2}+y^{2}+z^{2}+x y z=4$, determine the least real number K satisfying

$$
\frac{z(x z+y z+y)}{x y+y^{2}+z^{2}+1} \leq K
$$

Day 3 April 1st
1 Let E be intersection of the diagonals of convex quadrilateral $A B C D$. It is given that $m(\widehat{E D C})=$ $m(\widehat{D E C})=m(\widehat{B A D})$. If F is a point on $[B C]$ such that $m(\widehat{B A F})+m(\widehat{E B F})=m(\widehat{B F E})$, show that A, B, F, D are concyclic.

2 Determine all functions $f: \mathbf{R} \rightarrow \mathbf{R}^{+}$such that for all real numbers x, y the following conditions hold:
i. $f\left(x^{2}\right)=f(x)^{2}-2 x f(x)$
ii. $\quad f(-x)=f(x-1)$
iii. $1<x<y \Longrightarrow f(x)<f(y)$.

3 Some cities of a country consisting of n cities are connected by round trip flights so that there are at least k flights from any city and any city is reachable from any city. Prove that for any such flight organization these flights can be distributed among $n-k$ air companies so that one can reach any city from any city by using of at most one flight of each air company.

