Art of Problem Solving

AoPS Community

Turkey Team Selection Test 2014

www.artofproblemsolving.com/community/c5469
by emregirgin35

Day 1 March 1st

1 Find the number of $\left(a_{1}, a_{2}, \ldots, a_{2014}\right)$ permutations of the $(1,2, \ldots, 2014)$ such that, for all $1 \leq i<$ $j \leq 2014, i+a_{i} \leq j+a_{j}$.

2 Find all f functions from real numbers to itself such that for all real numbers x, y the equation

$$
f\left(f(y)+x^{2}+1\right)+2 x=y+(f(x+1))^{2}
$$

holds.
3 Let r, R and r_{a} be the radii of the incircle, circumcircle and A-excircle of the triangle $A B C$ with $A C>A B$, respectively. I, O and J_{A} are the centers of these circles, respectively. Let incircle touches the $B C$ at D, for a point $E \in(B D)$ the condition $A\left(I E J_{A}\right)=2 A(I E O)$ holds.
Prove that

$$
E D=A C-A B \Longleftrightarrow R=2 r+r_{a} .
$$

Day 2 March 2nd

$1 \quad$ Find all pairs (m, n) of positive odd integers, such that $n \mid 3 m+1$ and $m \mid n^{2}+3$.
2 A circle ω cuts the sides $B C, C A, A B$ of the triangle $A B C$ at A_{1} and $A_{2} ; B_{1}$ and $B_{2} ; C_{1}$ and C_{2}, respectively. Let P be the center of ω. A^{\prime} is the circumcenter of the triangle $A_{1} A_{2} P, B^{\prime}$ is the circumcenter of the triangle $B_{1} B_{2} P, C^{\prime}$ is the circumcenter of the triangle $C_{1} C_{2} P$. Prove that $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ concur.

3 Prove that for all all non-negative real numbers a, b, c with $a^{2}+b^{2}+c^{2}=1$

$$
\sqrt{a+b}+\sqrt{a+c}+\sqrt{b+c} \geq 5 a b c+2
$$

Day 3 March 3rd
1 Let P be a point inside the acute triangle $A B C$ with $m(\widehat{P A C})=m(\widehat{P C B}) . D$ is the midpoint of the segment $P C$. $A P$ and $B C$ intersect at E, and $B P$ and $D E$ intersect at Q. Prove that $\sin \widehat{B C Q}=\sin \widehat{B A P}$.
$2 a_{1}=-5, a_{2}=-6$ and for all $n \geq 2$ the $\left(a_{n}\right)^{\infty}{ }_{n=1}$ sequence defined as,

$$
\left.a_{n+1}=a_{n}+\left(a_{1}+1\right)\left(2 a_{2}+1\right)\left(3 a_{3}+1\right) \cdots\left((n-1) a_{n-1}+1\right)\left(\left(n^{2}+n\right) a_{n}+2 n+1\right)\right)
$$

If a prime p divides $n a_{n}+1$ for a natural number n , prove that there is a integer m such that $m^{2} \equiv 5(\bmod p)$

3 At the bottom-left corner of a 2014×2014 chessboard, there are some green worms and at the top-left corner of the same chessboard, there are some brown worms. Green worms can move only to right and up, and brown worms can move only to right and down. After a while, the worms make some moves and all of the unit squares of the chessboard become occupied at least once throughout this process. Find the minimum total number of the worms.

