

AoPS Community

Cono Sur Olympiad 1992

www.artofproblemsolving.com/community/c5472 by Jos

Day 1	
1	Find a positive integrer number n such that, if yor put a number 2 on the left and a number 1 on the right, the new number is equal to $33n$.
2	Let P be a point outside the circle C . Find two points Q and R on the circle, such that P, Q and R are collinear and Q is the midpopint of the segmenet PR . (Discuss the number of solutions).
3	Consider the set <i>S</i> of 100 numbers: $1; \frac{1}{2}; \frac{1}{3};; \frac{1}{100}$. Any two numbers, <i>a</i> and <i>b</i> , are eliminated in <i>S</i> , and the number $a + b + ab$ is added. Now, there are 99 numbers on <i>S</i> . After doing this operation 99 times, there's only 1 number on <i>S</i> . What values can this number take?
Day 2	2
1	Prove that there aren't any positive integrer numbers x, y, z such that $x^2 + y^2 = 3z^2$.
2	In a $\triangle ABC$, consider a point <i>E</i> in <i>BC</i> such that $AE \perp BC$. Prove that $AE = \frac{bc}{2r}$, where <i>r</i> is the radio of the circle circumscripte, $b = AC$ and $c = AB$.
3	Consider a $m * n$ board. On each box there's a non-negative integrer number assigned. An operation consists on choosing any two boxes with 1 side in common, and add to this 2 numbers the same integrer number (it can be negative), so that both results are non-negatives. What conditions must be satisfied initially on the assignment of the boxes, in order to have, after some operations, the number 0 on every box?

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🍪

Art of Problem Solving is an ACS WASC Accredited School.