

AoPS Community

Cono Sur Olympiad 1994

www.artofproblemsolving.com/community/c5474 by Jos, alexilic

Day 1	
1	The positive integrer number n has 1994 digits. 14 of its digits are 0's and the number of times that the other digits: $1, 2, 3, 4, 5, 6, 7, 8, 9$ appear are in proportion $1: 2: 3: 4: 5: 6: 7: 8: 9$, respectively. Prove that n is not a perfect square.
2	Consider a circle <i>C</i> with diameter $AB = 1$. A point P_0 is chosen on <i>C</i> , $P_0 \neq A$, and starting in P_0 a sequence of points $P_1, P_2, \ldots, P_n, \ldots$ is constructed on <i>C</i> , in the following way: Q_n is the symmetrical point of <i>A</i> with respect of P_n and the straight line that joins <i>B</i> and Q_n cuts <i>C</i> at <i>B</i> and P_{n+1} (not necessary different). Prove that it is possible to choose P_0 such that: $\mathbf{i} \angle P_0 AB < 1$.
	ii In the sequence that starts with P_0 there are 2 points, P_k and P_j , such that $\triangle AP_kP_j$ is equilateral.
3	Let p be a positive real number given. Find the minimun vale of $x^3 + y^3$, knowing that x and y are positive real numbers such that $xy(x + y) = p$.
Day 2	
1	Pedro and Cecilia play the following game: Pedro chooses a positive integer number a and Cecilia wins if she finds a positive integrer number b , prime with a , such that, in the factorization of $a^3 + b^3$ will appear three different prime numbers. Prove that Cecilia can always win.
2	Solve the following equation in integers with gcd (x, y) = 1 $x^2 + y^2 = 2z^2$
3	Consider a $\triangle ABC$, with $AC \perp BC$. Consider a point D on AB such that $CD = k$, and the radius of the inscribe circles on $\triangle ADC$ and $\triangle CDB$ are equals. Prove that the area of $\triangle ABC$ is equal to k^2 .

Art of Problem Solving is an ACS WASC Accredited School.