Art of Problem Solving

AoPS Community

Cono Sur Olympiad 1994

www.artofproblemsolving.com/community/c5474
by Jos, alexilic

Day 1

1 The positive integrer number n has 1994 digits. 14 of its digits are 0 's and the number of times that the other digits: $1,2,3,4,5,6,7,8,9$ appear are in proportion $1: 2: 3: 4: 5: 6: 7: 8: 9$, respectively. Prove that n is not a perfect square.

2 Consider a circle C with diameter $A B=1$. A point P_{0} is chosen on $C, P_{0} \neq A$, and starting in P_{0} a sequence of points $P_{1}, P_{2}, \ldots, P_{n}, \ldots$ is constructed on C, in the following way: Q_{n} is the symmetrical point of A with respect of P_{n} and the straight line that joins B and Q_{n} cuts C at B and P_{n+1} (not necessary different). Prove that it is possible to choose P_{0} such that:
i $\angle P_{0} A B<1$.
ii In the sequence that starts with P_{0} there are 2 points, P_{k} and P_{j}, such that $\triangle A P_{k} P_{j}$ is equilateral.

3 Let p be a positive real number given. Find the minimun vale of $x^{3}+y^{3}$, knowing that x and y are positive real numbers such that $x y(x+y)=p$.

Day 2

1 Pedro and Cecilia play the following game: Pedro chooses a positive integer number a and Cecilia wins if she finds a positive integrer number b, prime with a, such that, in the factorization of $a^{3}+b^{3}$ will appear three different prime numbers. Prove that Cecilia can always win.

2 Solve the following equation in integers with $\operatorname{gcd}(x, y)=1$
$x^{2}+y^{2}=2 z^{2}$
3 Consider a $\triangle A B C$, with $A C \perp B C$. Consider a point D on $A B$ such that $C D=k$, and the radius of the inscribe circles on $\triangle A D C$ and $\triangle C D B$ are equals. Prove that the area of $\triangle A B C$ is equal to k^{2}.

