Art of Problem Solving

AoPS Community

Cono Sur Olympiad 2007

www.artofproblemsolving.com/community/c5480
by Shu

Day 1

1 Find all pairs (x, y) of nonnegative integers that satisfy

$$
x^{3} y+x+y=x y+2 x y^{2} .
$$

2 Given are 100 positive integers whose sum equals their product. Determine the minimum number of 1 s that may occur among the 100 numbers.

3 Let $A B C$ be an acute triangle with altitudes $A D, B E, C F$ where D, E, F lie on $B C, A C, A B$, respectively. Let M be the midpoint of $B C$. The circumcircle of triangle $A E F$ cuts the line $A M$ at A and X. The line $A M$ cuts the line $C F$ at Y. Let Z be the point of intersection of $A D$ and $B X$. Show that the lines $Y Z$ and $B C$ are parallel.

Day 2

1 Some cells of a 2007×2007 table are colored. The table is charrua if none of the rows and none of the columns are completely colored.(a) What is the maximum number k of colored cells that a charrua table can have?
(b) For such k, calculate the number of distinct charrua tables that exist.

2 Let $A B C D E$ be a convex pentagon that satisfies all of the following:
-There is a circle Γ tangent to each of the sides.
-The lengths of the sides are all positive integers.
-At least one of the sides of the pentagon has length 1.
-The side $A B$ has length 2.
Let P be the point of tangency of Γ with $A B$.
(a) Determine the lengths of the segments $A P$ and $B P$.
(b) Give an example of a pentagon satisfying the given conditions.

3 Show that for each positive integer n, there is a positive integer k such that the decimal representation of each of the numbers $k, 2 k, \ldots, n k$ contains all of the digits $0,1,2, \ldots, 9$.

