AoPS Community

Cono Sur Olympiad 2011

www.artofproblemsolving.com/community/c5481
by Leicich

Day 1

1 Find all triplets of positive integers (x, y, z) such that $x^{2}+y^{2}+z^{2}=2011$.
2 The numbers 1 through 4^{n} are written on a board. In each step, Pedro erases two numbers a and b from the board, and writes instead the number $\frac{a b}{\sqrt{2 a^{2}+2 b^{2}}}$. Pedro repeats this procedure until only one number remains. Prove that this number is less than $\frac{1}{n}$, no matter what numbers Pedro chose in each step.

3 Let $A B C$ be an equilateral triangle. Let P be a point inside of it such that the square root of the distance of P to one of the sides is equal to the sum of the square roots of the distances of P to the other two sides. Find the geometric place of P.

Day 2

4 A number $\overline{a b c d}$ is called balanced if $a+b=c+d$. Find all balanced numbers with 4 digits that are the sum of two palindrome numbers.

5 Let $A B C$ be a triangle and D a point in $A C$. If $\angle C B D-\angle A B D=60^{\circ}, B \hat{D} C=30^{\circ}$ and also $A B \cdot B C=B D^{2}$, determine the measure of all the angles of triangle $A B C$.

6 Let Q be a $(2 n+1) \times(2 n+1)$ board. Some of its cells are colored black in such a way that every 2×2 board of Q has at most 2 black cells. Find the maximum amount of black cells that the board may have.

