Art of Problem Solving

AoPS Community

Cono Sur Olympiad 2014

www.artofproblemsolving.com/community/c5484
by Leicich

Day 1

1 Numbers 1 through 2014 are written on a board. A valid operation is to erase two numbers a and b on the board and replace them with the greatest common divisor and the least common multiple of a and b.

Prove that, no matter how many operations are made, the sum of all the numbers that remain on the board is always larger than $2014 \times \sqrt[2014]{2014!}$

2 A pair of positive integers (a, b) is called charrua if there is a positive integer c such that $a+b+c$ and $a \times b \times c$ are both square numbers; if there is no such number c, then the pair is called noncharrua.
a) Prove that there are infinite non-charrua pairs.
b) Prove that there are infinite positive integers n such that $(2, n)$ is charrua.

3 Let $A B C D$ be a rectangle and P a point outside of it such that $\angle B P C=90^{\circ}$ and the area of the pentagon $A B P C D$ is equal to $A B^{2}$.

Show that $A B P C D$ can be divided in 3 pieces with straight cuts in such a way that a square can be built using those 3 pieces, without leaving any holes or placing pieces on top of each other.

Note: the pieces can be rotated and flipped over.

Day 2

4 Show that the number $n^{2}-2^{2014} \times 2014 n+4^{2013}\left(2014^{2}-1\right)$ is not prime, where n is a positive integer.

5 Let $A B C D$ be an inscribed quadrilateral in a circumference with center O such that it lies inside $A B C D$ and $\angle B A C=\angle O D A$. Let E be the intersection of $A C$ with $B D$. Lines r and s are drawn through E such that r is perpendicular to $B C$, and s is perpendicular to $A D$. Let P be the intersection of r with $A D$, and M the intersection of s with $B C$. Let N be the midpoint of $E O$.

Prove that M, N, and P lie on a line.
$6 \quad$ Let F be a family of subsets of $S=\{1,2, \ldots, n\}(n \geq 2)$. A valid play is to choose two disjoint sets A and B from F and add $A \cup B$ to F (without removing A and B).

Initially, F has all the subsets that contain only one element of S. The goal is to have all subsets of $n-1$ elements of S in F using valid plays.

Determine the lowest number of plays required in order to achieve the goal.

