AoPS Community

Tuymaada Olympiad 2013

www.artofproblemsolving.com/community/c5499
by mavropnevma, micliva

- \quad Seniors

Day 1

1100 heaps of stones lie on a table. Two players make moves in turn. At each move, a player can remove any non-zero number of stones from the table, so that at least one heap is left untouched. The player that cannot move loses. Determine, for each initial position, which of the players, the first or the second, has a winning strategy.

K. Kokhas

EDIT. It is indeed confirmed by the sender that empty heaps are still heaps, so the third post contains the right guess of an interpretation.

2 Points X and Y inside the rhombus $A B C D$ are such that Y is inside the convex quadrilateral $B X D C$ and $2 \angle X B Y=2 \angle X D Y=\angle A B C$. Prove that the lines $A X$ and $C Y$ are parallel.

S. Berlov

3 The vertices of a connected graph cannot be coloured with less than $n+1$ colours (so that adjacent vertices have different colours).
Prove that $\frac{n(n-1)}{2}$ edges can be removed from the graph so that it remains connected.

V. Dolnikov

EDIT. It is confirmed by the official solution that the graph is tacitly assumed to be finite.
4 Prove that if x, y, z are positive real numbers and $x y z=1$ then

$$
\frac{x^{3}}{x^{2}+y}+\frac{y^{3}}{y^{2}+z}+\frac{z^{3}}{z^{2}+x} \geq \frac{3}{2} .
$$

A. Golovanov

Day 2

5 Prove that every polynomial of fourth degree can be represented in the form $P(Q(x))+R(S(x))$, where P, Q, R, S are quadratic trinomials.
A. Golovanov

EDIT. It is confirmed that assuming the coefficients to be real, while solving the problem, earned a maximum score.

6 Solve the equation $p^{2}-p q-q^{3}=1$ in prime numbers.
A. Golovanov

7 Points $A_{1}, A_{2}, A_{3}, A_{4}$ are the vertices of a regular tetrahedron of edge length 1 . The points B_{1} and B_{2} lie inside the figure bounded by the plane $A_{1} A_{2} A_{3}$ and the spheres of radius 1 and centres A_{1}, A_{2}, A_{3}.
Prove that $B_{1} B_{2}<\max \left\{B_{1} A_{1}, B_{1} A_{2}, B_{1} A_{3}, B_{1} A_{4}\right\}$.

A. Kupavsky

8 Cards numbered from 1 to 2^{n} are distributed among k children, $1 \leq k \leq 2^{n}$, so that each child gets at least one card. Prove that the number of ways to do that is divisible by 2^{k-1} but not by 2^{k}.

M. Ivanov

- Juniors

Day 1

1100 heaps of stones lie on a table. Two players make moves in turn. At each move, a player can remove any non-zero number of stones from the table, so that at least one heap is left untouched. The player that cannot move loses. Determine, for each initial position, which of the players, the first or the second, has a winning strategy.

K. Kokhas

EDIT. It is indeed confirmed by the sender that empty heaps are still heaps, so the third post contains the right guess of an interpretation.
$2 A B C D E F$ is a convex hexagon, such that in it $A C\|D F, B D\| A E$ and $C E \| B F$. Prove that

$$
A B^{2}+C D^{2}+E F^{2}=B C^{2}+D E^{2}+A F^{2}
$$

N. Sedrakyan

3 For every positive real numbers a and b prove the inequality

$$
\sqrt{a b} \leq \frac{1}{3} \sqrt{\frac{a^{2}+b^{2}}{2}}+\frac{2}{3} \frac{2}{\frac{1}{a}+\frac{1}{b}}
$$

A. Khabrov

4 The vertices of a connected graph cannot be coloured with less than $n+1$ colours (so that adjacent vertices have different colours).
Prove that $\frac{n(n-1)}{2}$ edges can be removed from the graph so that it remains connected.
V. Dolnikov

EDIT. It is confirmed by the official solution that the graph is tacitly assumed to be finite.

Day 2

5 Each face of a $7 \times 7 \times 7$ cube is divided into unit squares. What is the maximum number of squares that can be chosen so that no two chosen squares have a common point?
A. Chukhnov

6 Quadratic trinomials with positive leading coefficients are arranged in the squares of a 6×6 table. Their 108 coefficients are all integers from -60 to 47 (each number is used once). Prove that at least in one column the sum of all trinomials has a real root.
K. Kokhas \& F. Petrov

7 Solve the equation $p^{2}-p q-q^{3}=1$ in prime numbers.

A. Golovanov

8 The point A_{1} on the perimeter of a convex quadrilateral $A B C D$ is such that the line $A A_{1}$ divides the quadrilateral into two parts of equal area. The points B_{1}, C_{1}, D_{1} are defined similarly. Prove that the area of the quadrilateral $A_{1} B_{1} C_{1} D_{1}$ is greater than a quarter of the area of $A B C D$.
L. Emelyanov

