

AoPS Community

1999 Italy TST

Italy TST 1999

www.artofproblemsolving.com/community/c5502 by WakeUp

- **1** Prove that for any prime number p the equation $2^p + 3^p = a^n$ has no solution (a, n) in integers greater than 1.
- **2** Let *D* and *E* be points on sides *AB* and *AC* respectively of a triangle *ABC* such that *DE* is parallel to *BC* and tangent to the incircle of *ABC*. Prove that

$$DE \le \frac{1}{8}(AB + BC + CA)$$

3 (a) Find all strictly monotone functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x + f(y)) = f(x) + y$$
 for all real x, y .

(b) If n > 1 is an integer, prove that there is no strictly monotone function $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x + f(y)) = f(x) + y^n$$
 for all real x, y .

4 Let X be an *n*-element set and let A_1, \ldots, A_m be subsets of X such that

i) $|A_i| = 3$ for each i = 1, ..., m.

ii) $|A_i \cap A_j| \le 1$ for any two distinct indices i, j.

Show that there exists a subset of X with at least $\lfloor \sqrt{2n} \rfloor$ elements which does not contain any of the A_i s.

AoPS Online **AoPS** Academy **AoPS** Academy