AoPS Community

Italy TST 1999

www.artofproblemsolving.com/community/c5502
by WakeUp

1 Prove that for any prime number p the equation $2^{p}+3^{p}=a^{n}$ has no solution (a, n) in integers greater than 1.
$2 \quad$ Let D and E be points on sides $A B$ and $A C$ respectively of a triangle $A B C$ such that $D E$ is parallel to $B C$ and tangent to the incircle of $A B C$. Prove that

$$
D E \leq \frac{1}{8}(A B+B C+C A)
$$

3 (a) Find all strictly monotone functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(y))=f(x)+y \quad \text { for all real } x, y .
$$

(b) If $n>1$ is an integer, prove that there is no strictly monotone function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x+f(y))=f(x)+y^{n} \quad \text { for all real } x, y
$$

$4 \quad$ Let X be an n-element set and let A_{1}, \ldots, A_{m} be subsets of X such that
i) $\left|A_{i}\right|=3$ for each $i=1, \ldots, m$.
ii) $\left|A_{i} \cap A_{j}\right| \leq 1$ for any two distinct indices i, j.

Show that there exists a subset of X with at least $\lfloor\sqrt{2 n}\rfloor$ elements which does not contain any of the $A_{i} \mathrm{~s}$.

