AoPS Community

Italy TST 2000

www.artofproblemsolving.com/community/c5503
by WakeUp, outback

1 Determine all triples (x, y, z) of positive integers such that

$$
\frac{13}{x^{2}}+\frac{1996}{y^{2}}=\frac{z}{1997}
$$

2 Let $A B C$ be an isosceles right triangle and M be the midpoint of its hypotenuse $A B$. Points D and E are taken on the legs $A C$ and $B C$ respectively such that $A D=2 D C$ and $B E=2 E C$. Lines $A E$ and $D M$ intersect at F. Show that $F C$ bisects the $\angle D F E$.

3 Given positive numbers a_{1} and b_{1}, consider the sequences defined by

$$
a_{n+1}=a_{n}+\frac{1}{b_{n}}, \quad b_{n+1}=b_{n}+\frac{1}{a_{n}} \quad(n \geq 1)
$$

Prove that $a_{25}+b_{25} \geq 10 \sqrt{2}$.
4 On a mathematical competition n problems were given. The final results showed that:
(i) on each problem, exactly three contestants scored 7 points;
(ii) for each pair of problems, exactly one contestant scored 7 points on both problems.

Prove that if $n \geq 8$, then there is a contestant who got 7 points on each problem. Is this statement necessarily true if $n=7$?

