Art of Problem Solving

AoPS Community

Italy TST 2002

www.artofproblemsolving.com/community/c5505
by WakeUp, outback

Day 1

1 Given that in a triangle $A B C, A B=3, B C=4$ and the midpoints of the altitudes of the triangle are collinear, find all possible values of the length of $A C$.

2 Prove that for each prime number p and positive integer n, p^{n} divides

$$
\binom{p^{n}}{p}-p^{n-1} .
$$

3 Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$which satisfy the following conditions: (i) $f(x+f(y))=$ $f(x) f(y)$ for all $x, y>0$; (ii) there are at most finitely many x with $f(x)=1$.

Day 2

1 A scalene triangle $A B C$ is inscribed in a circle Γ. The bisector of angle A meets $B C$ at E. Let M be the midpoint of the arc $B A C$. The line $M E$ intersects Γ again at D. Show that the circumcentre of triangle $A E D$ coincides with the intersection point of the tangent to Γ at D and the line $B C$.

2 On a soccer tournament with $n \geq 3$ teams taking part, several matches are played in such a way that among any three teams, some two play a match. (a) If $n=7$, find the smallest number of matches that must be played. (b) Find the smallest number of matches in terms of n.

3 Prove that for any positive integer m there exist an infinite number of pairs of integers (x, y) such that (i) x and y are relatively prime; (ii) x divides $y^{2}+m$; (iii) y divides $x^{2}+m$.

