

AoPS Community

Italy TST 2002

www.artofproblemsolving.com/community/c5505 by WakeUp, outback

Day 1

1	Given that in a triangle ABC , $AB = 3$, $BC = 4$ and the midpoints of the altitudes of the triangle are collinear, find all possible values of the length of AC .
2	Prove that for each prime number p and positive integer n , p^n divides
	$\binom{p^n}{p} - p^{n-1}.$

3 Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ which satisfy the following conditions: (i) f(x + f(y)) = f(x)f(y) for all x, y > 0; (ii) there are at most finitely many x with f(x) = 1.

Day 2

- **1** A scalene triangle ABC is inscribed in a circle Γ . The bisector of angle A meets BC at E. Let M be the midpoint of the arc BAC. The line ME intersects Γ again at D. Show that the circumcentre of triangle AED coincides with the intersection point of the tangent to Γ at D and the line BC.
- **2** On a soccer tournament with $n \ge 3$ teams taking part, several matches are played in such a way that among any three teams, some two play a match. (a) If n = 7, find the smallest number of matches that must be played. (b) Find the smallest number of matches in terms of n.
- **3** Prove that for any positive integer m there exist an infinite number of pairs of integers (x, y) such that (i) x and y are relatively prime; (ii) x divides $y^2 + m$; (iii) y divides $x^2 + m$.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱