Art of Problem Solving

AoPS Community

Italy TST 2003

www.artofproblemsolving.com/community/c5506
by WakeUp

Day 1

1 Find all triples of positive integers (a, b, p) with a, b positive integers and p a prime number such that $2^{a}+p^{b}=19^{a}$

2 Let $B \neq A$ be a point on the tangent to circle S_{1} through the point A on the circle. A point C outside the circle is chosen so that segment $A C$ intersects the circle in two distinct points. Let S_{2} be the circle tangent to $A C$ at C and to S_{1} at some point D, where D and B are on the opposite sides of the line $A C$. Let O be the circumcentre of triangle $B C D$. Show that O lies on the circumcircle of triangle $A B C$.

3 Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy

$$
f(f(x)+y)=2 x+f(f(y)-x) \quad \text { for all real } x, y
$$

Day 2

1 The incircle of a triangle $A B C$ touches the sides $A B, B C, C A$ at points D, E, F respectively. The line through A parallel to $D F$ meets the line through C parallel to $E F$ at G. (a) Prove that the quadrilateral $A I C G$ is cyclic. (b) Prove that the points B, I, G are collinear.

2 For n an odd positive integer, the unit squares of an $n \times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A tromino is an L-shape formed by three connected unit squares. (a) For which values of n is it possible to cover all the black squares with non-overlapping trominoes lying entirely on the chessboard? (b) When it is possible, find the minimum number of trominoes needed.

3 Let $p(x)$ be a polynomial with integer coefficients and let n be an integer. Suppose that there is a positive integer k for which $f^{(k)}(n)=n$, where $f^{(k)}(x)$ is the polynomial obtained as the composition of k polynomials f. Prove that $p(p(n))=n$.

