AOPS Online

AoPS Community

2003 Italy TST

Italy TST 2003

www.artofproblemsolving.com/community/c5506 by WakeUp

Day 1

1	Find all triples of positive integers (a, b, p) with a, b positive integers and p a prime number such that $2^a + p^b = 19^a$
2	Let $B \neq A$ be a point on the tangent to circle S_1 through the point A on the circle. A point C outside the circle is chosen so that segment AC intersects the circle in two distinct points. Let S_2 be the circle tangent to AC at C and to S_1 at some point D , where D and B are on the opposite sides of the line AC . Let O be the circumcentre of triangle BCD . Show that O lies on the circumcircle of triangle ABC .
<u> </u>	Determine all functions (m . mthat active

3 Determine all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy

f(f(x) + y) = 2x + f(f(y) - x) for all real x, y.

Day 2

- 1 The incircle of a triangle *ABC* touches the sides *AB*, *BC*, *CA* at points *D*, *E*, *F* respectively. The line through *A* parallel to *DF* meets the line through *C* parallel to *EF* at *G*. (*a*) Prove that the quadrilateral *AICG* is cyclic. (*b*) Prove that the points *B*, *I*, *G* are collinear.
- **2** For *n* an odd positive integer, the unit squares of an $n \times n$ chessboard are coloured alternately black and white, with the four corners coloured black. A *tromino* is an *L*-shape formed by three connected unit squares. (*a*) For which values of *n* is it possible to cover all the black squares with non-overlapping trominoes lying entirely on the chessboard? (*b*) When it is possible, find the minimum number of trominoes needed.
- **3** Let p(x) be a polynomial with integer coefficients and let n be an integer. Suppose that there is a positive integer k for which $f^{(k)}(n) = n$, where $f^{(k)}(x)$ is the polynomial obtained as the composition of k polynomials f. Prove that p(p(n)) = n.

AoPS Online 🐼 AoPS Academy 🐼 AoPS 🗱