2004 Italy TST

AoPS Community

Italy TST 2004

www.artofproblemsolving.com/community/c5507 by MindFlyer, WakeUp

Day 1

- At the vertices A, B, C, D, E, F, G, H of a cube, 2001, 2002, 2003, 2004, 2005, 2008, 2007 and 2006 stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbours, or to move a stone to a vertex from each of its three neighbours. Which of the following arrangements of stones at A, B, ..., H can be obtained? (a) 2001, 2002, 2003, 2004, 2006, 2007, 200
 (b) 2002, 2003, 2004, 2001, 2006, 2005, 2008, 2007; (c) 2004, 2002, 2003, 2001, 2005, 2008, 2007, 2006.
- **2** Let $\mathcal{P}_0 = A_0 A_1 \dots A_{n-1}$ be a convex polygon such that $A_i A_{i+1} = 2^{[i/2]}$ for $i = 0, 1, \dots, n-1$ (where $A_n = A_0$). Define the sequence of polygons $\mathcal{P}_k = A_0^k A_1^k \dots A_{n-1}^k$ as follows: A_i^1 is symmetric to A_i with respect to A_0, A_i^2 is symmetric to A_i^1 with respect to A_1^1, A_i^3 is symmetric to A_i^2 with respect to A_2^2 and so on. Find the values of n for which infinitely many polygons \mathcal{P}_k coincide with \mathcal{P}_0 .
- **3** Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for all $m, n \in \mathbb{N}$,

 $(2^{m}+1)f(n)f(2^{m}n) = 2^{m}f(n)^{2} + f(2^{m}n)^{2} + (2^{m}-1)^{2}n.$

Day 2	2
1	Two circles γ_1 and γ_2 intersect at A and B . A line r through B meets γ_1 at C and γ_2 at D so that B is between C and D . Let s be the line parallel to AD which is tangent to γ_1 at E , at the smaller distance from AD . Line EA meets γ_2 in F . Let t be the tangent to γ_2 at F . (a) Prove that t is parallel to AC . (b) Prove that the lines r, s, t are concurrent.
2	A positive integer n is said to be a <i>perfect power</i> if $n = a^b$ for some integers a, b with $b > 1$. (a) Find 2004 perfect powers in arithmetic progression. (b) Prove that perfect powers cannot form an infinite arithmetic progression.
3	Given real numbers $x_i, y_i (i = 1, 2,, n)$, let A be the $n \times n$ matrix given by $a_{ij} = 1$ if $x_i \ge y_j$ and $a_{ij} = 0$ otherwise. Suppose B is a $n \times n$ matrix whose entries are 0 and 1 such that the sum of entries in any row or column of B equals the sum of entries in the corresponding row or column of A . Prove that $B = A$.

Art of Problem Solving is an ACS WASC Accredited School.

1