Art of Problem Solving

AoPS Community

Italy TST 2004

www.artofproblemsolving.com/community/c5507
by MindFlyer, WakeUp

Day 1

1 At the vertices A, B, C, D, E, F, G, H of a cube, 2001, 2002, 2003, 2004, 2005, 2008, 2007 and 2006 stones respectively are placed. It is allowed to move a stone from a vertex to each of its three neighbours, or to move a stone to a vertex from each of its three neighbours. Which of the following arrangements of stones at A, B, \ldots, H can be obtained? (a) 2001, 2002, 2003, 2004, 2006, 2007, 200 (b) 2002, 2003, 2004, 2001, 2006, 2005, 2008, 2007; (c) 2004, 2002, 2003, 2001, 2005, 2008, 2007, 2006.

2 Let $\mathcal{P}_{0}=A_{0} A_{1} \ldots A_{n-1}$ be a convex polygon such that $A_{i} A_{i+1}=2^{[i / 2]}$ for $i=0,1, \ldots, n-1$ (where $A_{n}=A_{0}$). Define the sequence of polygons $\mathcal{P}_{k}=A_{0}^{k} A_{1}^{k} \ldots A_{n-1}^{k}$ as follows: A_{i}^{1} is symmetric to A_{i} with respect to A_{0}, A_{i}^{2} is symmetric to A_{i}^{1} with respect to A_{1}^{1}, A_{i}^{3} is symmetric to A_{i}^{2} with respect to A_{2}^{2} and so on. Find the values of n for which infinitely many polygons \mathcal{P}_{k} coincide with \mathcal{P}_{0}.
$3 \quad$ Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for all $m, n \in \mathbb{N}$,

$$
\left(2^{m}+1\right) f(n) f\left(2^{m} n\right)=2^{m} f(n)^{2}+f\left(2^{m} n\right)^{2}+\left(2^{m}-1\right)^{2} n
$$

Day 2

$1 \quad$ Two circles γ_{1} and γ_{2} intersect at A and B. A line r through B meets γ_{1} at C and γ_{2} at D so that B is between C and D. Let s be the line parallel to $A D$ which is tangent to γ_{1} at E, at the smaller distance from $A D$. Line $E A$ meets γ_{2} in F. Let t be the tangent to γ_{2} at F. (a) Prove that t is parallel to $A C$. (b) Prove that the lines r, s, t are concurrent.

2 A positive integer n is said to be a perfect power if $n=a^{b}$ for some integers a, b with $b>1$. (a) Find 2004 perfect powers in arithmetic progression. (b) Prove that perfect powers cannot form an infinite arithmetic progression.

3 Given real numbers $x_{i}, y_{i}(i=1,2, \ldots, n)$, let A be the $n \times n$ matrix given by $a_{i j}=1$ if $x_{i} \geq y_{j}$ and $a_{i j}=0$ otherwise. Suppose B is a $n \times n$ matrix whose entries are 0 and 1 such that the sum of entries in any row or column of B equals the sum of entries in the corresponding row or column of A. Prove that $B=A$.

