AoPS Community

Italy TST 2007

www.artofproblemsolving.com/community/c5510
by Simo_the_Wolf, parmenides51

Day 1

1 Let $A B C$ an acute triangle.
(a) Find the locus of points that are centers of rectangles whose vertices lie on the sides of $A B C$;
(b) Determine if exist some points that are centers of 3 distinct rectangles whose vertices lie on the sides of $A B C$.

2 In a competition, there were $2 n+1$ teams. Every team plays exatly once against every other team. Every match finishes with the victory of one of the teams. We call cyclical a 3-subset of team A, B, C if A won against B, B won against C, C won against A.
(a) Find the minimum of cyclical 3 -subset (depending on n);
(b) Find the maximum of cyclical 3 -subset (depending on n).
$3 \quad$ Find all $f: R \longrightarrow R$ such that

$$
f(x y+f(x))=x f(y)+f(x)
$$

for every pair of real numbers x, y.

Day 2

1 We have a complete graph with n vertices. We have to color the vertices and the edges in a way such that: no two edges pointing to the same vertice are of the same color; a vertice and an edge pointing him are coloured in a different way. What is the minimum number of colors we need?

2 Let $A B C$ a acute triangle.
(a) Find the locus of all the points P such that, calling O_{a}, O_{b}, O_{c} the circumcenters of $P B C$, $P A C, P A B$:

$$
\frac{O_{a} O_{b}}{A B}=\frac{O_{b} O_{c}}{B C}=\frac{O_{c} O_{a}}{C A}
$$

(b) For all points P of the locus in (a), show that the lines $A O_{a}, B O_{b}, C O_{c}$ are cuncurrent (in X);
(c) Show that the power of X wrt the circumcircle of $A B C$ is:

$$
-\frac{a^{2}+b^{2}+c^{2}-5 R^{2}}{4}
$$

Where $a=B C, b=A C$ and $c=A B$.
$3 \quad$ Let $p \geq 5$ be a prime.
(a) Show that exists a prime $q \neq p$ such that $q \mid(p-1)^{p}+1$
(b) Factoring in prime numbers $(p-1)^{p}+1=\prod_{i=1}^{n} p_{i}^{a_{i}}$ show that:

$$
\sum_{i=1}^{n} p_{i} a_{i} \geq \frac{p^{2}}{2}
$$

