AoPS Community

Nordic 1998

www.artofproblemsolving.com/community/c551166
by parmenides51

1 Determine all functions f defined in the set of rational numbers and taking their values in the same set such that the equation $f(x+y)+f(x-y)=2 f(x)+2 f(y)$ holds for all rational numbers x and y.
$2 \quad$ Let C_{1} and C_{2} be two circles intersecting at A and B. Let S and T be the centres of C_{1} and C_{2}, respectively. Let P be a point on the segment $A B$ such that $|A P| \neq|B P|$ and $P \neq A, P \neq B$. We draw a line perpendicular to $S P$ through P and denote by C and D the points at which this line intersects C_{1}. We likewise draw a line perpendicular to $T P$ through P and denote by E and F the points at which this line intersects C_{2}. Show that C, D, E, and F are the vertices of a rectangle.

3 (a) For which positive numbers n does there exist a sequence $x_{1}, x_{2}, \ldots, x_{n}$, which contains each of the numbers $1,2, \ldots, n$ exactly once and for which $x_{1}+x_{2}+\ldots+x_{k}$ is divisible by k for each $k=1,2, \ldots, n$?
(b) Does there exist an infinite sequence $x_{1}, x_{2}, x_{3}, \ldots$, which contains every positive integer exactly once and such that $x_{1}+x_{2}+\ldots+x_{k}$ is divisible by k for every positive integer k ?

4 Let n be a positive integer. Count the number of numbers $k \in\{0,1,2, \ldots, n\}$ such that $\binom{n}{k}$ is odd. Show that this number is a power of two, i.e. of the form 2^{p} for some nonnegative integer p.

