AoPS Community

Nordic 1999

www.artofproblemsolving.com/community/c551168
by parmenides51

1 The function f is defined for non-negative integers and satisfies the condition $f(n)=f(f(n+$ $11)$), if $n \leq 1999$ and $f(n)=n-5$, if $n>1999$. Find all solutions of the equation $f(n)=1999$.

2 Consider 7-gons inscribed in a circle such that all sides of the 7-gon are of different length. Determine the maximal number of 120° angles in this kind of a 7 -gon.

3 The infinite integer plane $Z \times Z=Z^{2}$ consists of all number pairs (x, y), where x and y are integers. Let a and b be non-negative integers. We call any move from a point (x, y) to any of the points $(x \pm a, y \pm b)$ or $(x \pm b, y \pm a)$ a (a, b)-knight move. Determine all numbers a and b, for which it is possible to reach all points of the integer plane from an arbitrary starting point using only (a, b)-knight moves.

4 Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers and $n \geq 1$. Show that $n\left(\frac{1}{a_{1}}+\ldots+\frac{1}{a_{n}}\right) \geq\left(\frac{1}{1+a_{1}}+\ldots+\right.$ $\left.\frac{1}{1+a_{n}}\right)\left(n+\frac{1}{a_{1}}+\ldots+\frac{1}{a_{n}}\right)$
When does equality hold?

