

AoPS Community

JBMO Shortlist 2003

www.artofproblemsolving.com/community/c551170 by Snakes, parmenides51, Iris Aliaj

-	Geometry
1	Is there is a convex quadrilateral which the diagonals divide into four triangles with areas of distinct primes?
2	Is there a triangle with $12 cm^2$ area and $12 cm$ perimeter?
3	Let G be the centroid of triangle ABC, and A' the symmetric of A wrt C. Show that G, B, C, A' are concyclic if and only if $GA \perp GC$.
4	Three equal circles have a common point M and intersect in pairs at points A, B, C . Prove that that M is the orthocenter of triangle ABC .
5	Let ABC be an isosceles triangle with $AB = AC$. A semi-circle of diameter $[EF]$ with $E, F \in [BC]$, is tangent to the sides AB, AC in M, N respectively and AE intersects the semicircle at P . Prove that PF passes through the midpoint of $[MN]$.
6	Parallels to the sides of a triangle passing through an interior point divide the inside of a triangle into 6 parts with the marked areas as in the figure. Show that $\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} \geq \frac{3}{2}$ https://cdn.artofproblemsolving.com/attachments/a/a/b0a85df58f2994b0975b654df0c342d8d png
7	Let D , E , F be the midpoints of the arcs BC , CA , AB on the circumcircle of a triangle ABC not containing the points A , B , C , respectively. Let the line DE meets BC and CA at G and H , and let M be the midpoint of the segment GH . Let the line FD meet BC and AB at K and J , and let N be the midpoint of the segment KJ .
	a) Find the angles of triangle DMN ;
	b) Prove that if P is the point of intersection of the lines AD and EF , then the circumcenter of triangle DMN lies on the circumcircle of triangle PMN .

Art of Problem Solving is an ACS WASC Accredited School.