AoPS Community

Danube Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c551208
by oVlad, GGPiku

- Juniors
$1 \quad$ What is the smallest value that the sum of the digits of the number $3 n^{2}+n+1, n \in \mathbb{N}$ can take?

2 Let $n \geq 3$ be a positive integer. Consider an $n \times n$ square. In each cell of the square, one of the numbers from the set $M=\{1,2, \ldots, 2 n-1\}$ is to be written. One such filling is called good if, for every index $1 \leq i \leq n$, row no. i and column no. i, together, contain all the elements of M.
-Prove that there exists $n \geq 3$ for which a good filling exists.
-Prove that for $n=2017$ there is no good filling of the $n \times n$ square.
3 Consider an acute triangle $A B C$ in which A_{1}, B_{1}, and C_{1} are the feet of the altitudes from A, B, and C, respectively, and H is the orthocenter. The perpendiculars from H onto $A_{1} C_{1}$ and $A_{1} B_{1}$ intersect lines $A B$ and $A C$ at P and Q, respectively. Prove that the line perpendicular to $B_{1} C_{1}$ that passes through A also contains the midpoint of the line segment $P Q$.

4 Determine all triples of positive integers (x, y, z) such that $x^{4}+y^{4}=2 z^{2}$ and x and y are relatively prime.

- \quad Seniors

1 Find all polynomials $P(x)$ with integer coefficients such that $a^{2}+b^{2}-c^{2}$ divides $P(a)+P(b)-P(c)$, for all integers a, b, c.

2 Let n be a positive interger. Let n real numbers be wrote on a paper. We call a "transformation" :choosing 2 numbers a, b and replace both of them with $a * b$. Find all n for which after a finite number of transformations and any n real numbers, we can have the same number written n times on the paper.

3 Let O, H be the circumcenter and the orthocenter of triangle $A B C$. Let F be the foot of the perpendicular from C onto AB , and M the midpoint of $C H$. Let N be the foot of the perpendicular from C onto the parallel through H at $O M$. Let D be on $A B$ such that $C A=C D$. Let $B N$ intersect $C D$ at P. Let $P H$ intersect $C A$ at Q. Prove that $Q F \perp O F$.

4 Let us have an infinite grid of unit squares. We write in every unit square a real number, such that the absolute value of the sum of the numbers from any $n * n$ square is less or equal than

1. Prove that the absolute value of the sum of the numbers from any $m * n$ rectangular is less or equal than 4.
