

AoPS Community

2017 Danube Mathematical Olympiad

Danube Mathematical Olympiad 2017

www.artofproblemsolving.com/community/c551208 by oVlad, GGPiku

-	Juniors
1	What is the smallest value that the sum of the digits of the number $3n^2+n+1, n \in \mathbb{N}$ can take?
2	Let $n \ge 3$ be a positive integer. Consider an $n \times n$ square. In each cell of the square, one of the numbers from the set $M = \{1, 2,, 2n - 1\}$ is to be written. One such filling is called <i>good</i> if, for every index $1 \le i \le n$, row no. <i>i</i> and column no. <i>i</i> , together, contain all the elements of M .
	-Prove that there exists $n \ge 3$ for which a good filling exists. -Prove that for $n = 2017$ there is no good filling of the $n \times n$ square.
3	Consider an acute triangle ABC in which A_1, B_1 , and C_1 are the feet of the altitudes from A, B , and C , respectively, and H is the orthocenter. The perpendiculars from H onto A_1C_1 and A_1B_1 intersect lines AB and AC at P and Q , respectively. Prove that the line perpendicular to B_1C_1 that passes through A also contains the midpoint of the line segment PQ .
4	Determine all triples of positive integers (x, y, z) such that $x^4 + y^4 = 2z^2$ and x and y are relatively prime.
-	Seniors
1	Find all polynomials $P(x)$ with integer coefficients such that $a^2+b^2-c^2$ divides $P(a)+P(b)-P(c)$, for all integers a, b, c .
2	Let n be a positive interger. Let n real numbers be wrote on a paper. We call a "transformation" :choosing 2 numbers a, b and replace both of them with $a * b$. Find all n for which after a finite number of transformations and any n real numbers, we can have the same number written n times on the paper.
3	Let O, H be the circumcenter and the orthocenter of triangle ABC . Let F be the foot of the perpendicular from C onto AB, and M the midpoint of CH . Let N be the foot of the perpendicular from C onto the parallel through H at OM . Let D be on AB such that $CA = CD$. Let BN intersect CD at P . Let PH intersect CA at Q . Prove that $QF \perp OF$.
4	Let us have an infinite grid of unit squares. We write in every unit square a real number, such that the absolute value of the sum of the numbers from any $n * n$ square is less or equal than

AoPS Community

2017 Danube Mathematical Olympiad

1. Prove that the absolute value of the sum of the numbers from any m * n rectangular is less or equal than 4.

AoPS Online
AoPS Academy
AoPS Content of the second s

Art of Problem Solving is an ACS WASC Accredited School.