APMO 2015

www.artofproblemsolving.com/community/c55655
by aditya21, hajimbrak

1 Let $A B C$ be a triangle, and let D be a point on side $B C$. A line through D intersects side $A B$ at X and ray $A C$ at Y. The circumcircle of triangle $B X D$ intersects the circumcircle ω of triangle $A B C$ again at point Z distinct from point B. The lines $Z D$ and $Z Y$ intersect ω again at V and W respectively.
Prove that $A B=V W$
Proposed by Warut Suksompong, Thailand
2 Let $S=\{2,3,4, \ldots\}$ denote the set of integers that are greater than or equal to 2 . Does there exist a function $f: S \rightarrow S$ such that

$$
f(a) f(b)=f\left(a^{2} b^{2}\right) \text { for all } a, b \in S \text { with } a \neq b ?
$$

Proposed by Angelo Di Pasquale, Australia
3 A sequence of real numbers a_{0}, a_{1}, \ldots is said to be good if the following three conditions hold.
(i) The value of a_{0} is a positive integer.
(ii) For each non-negative integer i we have $a_{i+1}=2 a_{i}+1$ or $a_{i+1}=\frac{a_{i}}{a_{i}+2}$
(iii) There exists a positive integer k such that $a_{k}=2014$.

Find the smallest positive integer n such that there exists a good sequence a_{0}, a_{1}, \ldots of real numbers with the property that $a_{n}=2014$.

Proposed by Wang Wei Hua, Hong Kong
4 Let n be a positive integer. Consider $2 n$ distinct lines on the plane, no two of which are parallel. Of the $2 n$ lines, n are colored blue, the other n are colored red. Let \mathcal{B} be the set of all points on the plane that lie on at least one blue line, and \mathcal{R} the set of all points on the plane that lie on at least one red line. Prove that there exists a circle that intersects \mathcal{B} in exactly $2 n-1$ points, and also intersects \mathcal{R} in exactly $2 n-1$ points.
Proposed by Pakawut Jiradilok and Warut Suksompong, Thailand
5 Determine all sequences $a_{0}, a_{1}, a_{2}, \ldots$ of positive integers with $a_{0} \geq 2015$ such that for all integers $n \geq 1$:
(i) a_{n+2} is divisible by a_{n};
(ii) $\left|s_{n+1}-(n+1) a_{n}\right|=1$, where $s_{n+1}=a_{n+1}-a_{n}+a_{n-1}-\cdots+(-1)^{n+1} a_{0}$.

Proposed by Pakawut Jiradilok and Warut Suksompong, Thailand

