Art of Problem Solving

AoPS Community

Korean Mathematical Olympiad held in 2017

www.artofproblemsolving.com/community/c559855
by seoneo, rkm0959

- Day 1
problem 1 Denote U as the set of 20 diagonals of the regular polygon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{8}$. Find the number of sets S which satisfies the following conditions.

1. S is a subset of U.
2. If $P_{i} P_{j} \in S$ and $P_{j} P_{k} \in S$, and $i \neq k, P_{i} P_{k} \in S$.
problem 2 Find all primes p such that there exist an integer n and positive integers k, m which satisfies the following.

$$
\frac{\left(m k^{2}+2\right) p-\left(m^{2}+2 k^{2}\right)}{m p+2}=n^{2}
$$

problem 3 Let there be a scalene triangle $A B C$, and its incircle hits $B C, C A, A B$ at D, E, F. The perpendicular bisector of $B C$ meets the circumcircle of $A B C$ at P, Q, where P is on the same side with A with respect to $B C$. Let the line parallel to $A Q$ and passing through D meet $E F$ at R. Prove that the intersection between $E F$ and $P Q$ lies on the circumcircle of $B C R$.
problem 4 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function as

$$
f(x)= \begin{cases}\frac{1}{x-1} & (x>1) \\ 1 & (x=1) \\ \frac{x}{1-x} & (x<1)\end{cases}
$$

Let x_{1} be a positive irrational number which is a zero of a quadratic polynomial with integer coefficients. For every positive integer n, let $x_{n+1}=f\left(x_{n}\right)$. Prove that there exists different positive integers k and ℓ such that $x_{k}=x_{\ell}$.

- Day 2
problem 5 Given a prime p, show that there exist two integers a, b which satisfies the following. For all integers $m, m^{3}+2017 a m+b$ is not a multiple of p.
problem 6 In a quadrilateral $A B C D$, we have $\angle A C B=\angle A D B=90$ and $C D<B C$. Denote E as the intersection of $A C$ and $B D$, and let the perpendicular bisector of $B D$ hit $B C$ at F. The circle with center F which passes through B hits $A B$ at $P(\neq B)$ and $A C$ at Q. Let M be the midpoint of $E P$. Prove that the circumcircle of $E P Q$ is tangent to $A B$ if and only if B, M, Q are colinear.
problem 7 Find all real numbers c such that there exists a function $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ which satisfies the following.

For all nonnegative reals $x, y, f\left(x+y^{2}\right) \geq c f(x)+y$.
Here $\mathbb{R}_{\geq 0}$ is the set of all nonnegative reals.
problem 8 For a positive integer n, there is a school with $2 n$ people. For a set X of students in this school, if any two students in X know each other, we call X well-formed. If the maximum number of students in a well-formed set is no more than n, find the maximum number of wellformed set.

Here, an empty set and a set with one student is regarded as well-formed as well.

