AoPS Community

2018 China National Olympiad

www.artofproblemsolving.com/community/c562721
by YanYau, fattypiggy123, mofumofu

Day 1 November 15, 2017
1 Let n be a positive integer. Let A_{n} denote the set of primes p such that there exists positive integers a, b satisfying

$$
\frac{a+b}{p} \text { and } \frac{a^{n}+b^{n}}{p^{2}}
$$

are both integers that are relatively prime to p. If A_{n} is finite, let $f(n)$ denote $\left|A_{n}\right|$.
a) Prove that A_{n} is finite if and only if $n \neq 2$.
b) Let m, k be odd positive integers and let d be their gcd. Show that

$$
f(d) \leq f(k)+f(m)-f(k m) \leq 2 f(d)
$$

2 Let n and k be positive integers and let

$$
T=\left\{(x, y, z) \in \mathbb{N}^{3} \mid 1 \leq x, y, z \leq n\right\}
$$

be the length n lattice cube. Suppose that $3 n^{2}-3 n+1+k$ points of T are colored red such that if P and Q are red points and $P Q$ is parallel to one of the coordinate axes, then the whole line segment $P Q$ consists of only red points.
Prove that there exists at least k unit cubes of length 1 , all of whose vertices are colored red.
3 Let q be a positive integer which is not a perfect cube. Prove that there exists a positive constant C such that for all natural numbers n, one has

$$
\left\{n q^{\frac{1}{3}}\right\}+\left\{n q^{\frac{2}{3}}\right\} \geq C n^{-\frac{1}{2}}
$$

where $\{x\}$ denotes the fractional part of x.
Day 2 November 16, 2017
$4 \quad A B C D$ is a cyclic quadrilateral whose diagonals intersect at P. The circumcircle of $\triangle A P D$ meets segment $A B$ at points A and E. The circumcircle of $\triangle B P C$ meets segment $A B$ at points B and F. Let I and J be the incenters of $\triangle A D E$ and $\triangle B C F$, respectively. Segments $I J$ and $A C$ meet at K. Prove that the points A, I, K, E are cyclic.

5 Let $n \geq 3$ be an odd number and suppose that each square in a $n \times n$ chessboard is colored either black or white. Two squares are considered adjacent if they are of the same color and share a common vertex and two squares a, b are considered connected if there exists a sequence of squares c_{1}, \ldots, c_{k} with $c_{1}=a, c_{k}=b$ such that c_{i}, c_{i+1} are adjacent for $i=$ $1,2, \ldots, k-1$.

Find the maximal number M such that there exists a coloring admitting M pairwise disconnected squares.

6 Let $n>k$ be two natural numbers and let a_{1}, \ldots, a_{n} be real numbers in the open interval ($k-1, k$). Let x_{1}, \ldots, x_{n} be positive reals such that for any subset $I \subset\{1, \ldots, n\}$ satisfying $|I|=k$, one has

$$
\sum_{i \in I} x_{i} \leq \sum_{i \in I} a_{i} .
$$

Find the largest possible value of $x_{1} x_{2} \cdots x_{n}$.

