

AoPS Community

2018 China National Olympiad

2018 China National Olympiad

www.artofproblemsolving.com/community/c562721 by YanYau, fattypiggy123, mofumofu

Day 1 November 15, 2017

1 Let *n* be a positive integer. Let A_n denote the set of primes *p* such that there exists positive integers *a*, *b* satisfying

$$\frac{a+b}{p}$$
 and $\frac{a^n+b^n}{p^2}$

are both integers that are relatively prime to p. If A_n is finite, let f(n) denote $|A_n|$.

a) Prove that A_n is finite if and only if $n \neq 2$.

b) Let m, k be odd positive integers and let d be their gcd. Show that

$$f(d) \le f(k) + f(m) - f(km) \le 2f(d).$$

2 Let *n* and *k* be positive integers and let

 $T = \{(x, y, z) \in \mathbb{N}^3 \mid 1 \le x, y, z \le n\}$

be the length n lattice cube. Suppose that $3n^2 - 3n + 1 + k$ points of T are colored red such that if P and Q are red points and PQ is parallel to one of the coordinate axes, then the whole line segment PQ consists of only red points.

Prove that there exists at least k unit cubes of length 1, all of whose vertices are colored red.

3 Let *q* be a positive integer which is not a perfect cube. Prove that there exists a positive constant *C* such that for all natural numbers *n*, one has

$$\{nq^{\frac{1}{3}}\} + \{nq^{\frac{2}{3}}\} \ge Cn^{-\frac{1}{2}}$$

where $\{x\}$ denotes the fractional part of x.

Day 2 November 16, 2017

4 *ABCD* is a cyclic quadrilateral whose diagonals intersect at *P*. The circumcircle of $\triangle APD$ meets segment *AB* at points *A* and *E*. The circumcircle of $\triangle BPC$ meets segment *AB* at points *B* and *F*. Let *I* and *J* be the incenters of $\triangle ADE$ and $\triangle BCF$, respectively. Segments *IJ* and *AC* meet at *K*. Prove that the points *A*, *I*, *K*, *E* are cyclic.

AoPS Community

2018 China National Olympiad

5 Let $n \ge 3$ be an odd number and suppose that each square in a $n \times n$ chessboard is colored either black or white. Two squares are considered adjacent if they are of the same color and share a common vertex and two squares a, b are considered connected if there exists a sequence of squares c_1, \ldots, c_k with $c_1 = a, c_k = b$ such that c_i, c_{i+1} are adjacent for $i = 1, 2, \ldots, k-1$.

Find the maximal number M such that there exists a coloring admitting M pairwise disconnected squares.

6 Let n > k be two natural numbers and let a_1, \ldots, a_n be real numbers in the open interval (k - 1, k). Let x_1, \ldots, x_n be positive reals such that for any subset $I \subset \{1, \ldots, n\}$ satisfying |I| = k, one has

$$\sum_{i \in I} x_i \le \sum_{i \in I} a_i.$$

Find the largest possible value of $x_1x_2\cdots x_n$.

Art of Problem Solving is an ACS WASC Accredited School.