Art of Problem Solving

AoPS Community

2017 Mexico National Olympiad

Mexico National Olympiad 2017

www.artofproblemsolving.com/community/c563642
by juckter

1 A knight is placed on each square of the first column of a 2017×2017 board. A move consists in choosing two different knights and moving each of them to a square which is one knight-step away. Find all integers k with $1 \leq k \leq 2017$ such that it is possible for each square in the k-th column to contain one knight after a finite number of moves.

Note: Two squares are a knight-step away if they are opposite corners of a 2×3 or 3×2 board.

2 A set of n positive integers is said to be balanced if for each integer k with $1 \leq k \leq n$, the average of any k numbers in the set is an integer. Find the maximum possible sum of the elements of a balanced set, all of whose elements are less than or equal to 2017.

3 Let $A B C$ be an acute triangle with orthocenter H. The circle through B, H, and C intersects lines $A B$ and $A C$ at D and E respectively, and segment $D E$ intersects $H B$ and $H C$ at P and Q respectively. Two points X and Y, both different from A, are located on lines $A P$ and $A Q$ respectively such that X, H, A, B are concyclic and Y, H, A, C are concyclic. Show that lines $X Y$ and $B C$ are parallel.

4 A subset B of $\{1,2, \ldots, 2017\}$ is said to have property T if any three elements of B are the sides of a nondegenerate triangle. Find the maximum number of elements that a set with property T may contain.
$5 \quad$ On a circle Γ, points A, B, N, C, D, M are chosen in a clockwise order in such a way that N and M are the midpoints of clockwise arcs $B C$ and $A D$ respectively. Let P be the intersection of $A C$ and $B D$, and let Q be a point on line $M B$ such that $P Q$ is perpendicular to $M N$. Point R is chosen on segment $M C$ such that $Q B=R C$, prove that the midpoint of $Q R$ lies on $A C$.
$6 \quad$ Let $n \geq 2$ and m be positive integers. m ballot boxes are placed in a line. Two players A and B play by turns, beginning with A, in the following manner. Each turn, A chooses two boxes and places a ballot in each of them. Afterwards, B chooses one of the boxes, and removes every ballot from it. A wins if after some turn of B, there exists a box containing n ballots. For each n, find the minimum value of m such that A can guarantee a win independently of how B plays.

