Art of Problem Solving

AoPS Community

Moldova Team Selection Test 2015

www.artofproblemsolving.com/community/c56732
by TheMaskedMagician, Tsarik, izaya-kun

Day 1

$1 \quad$ Find all functions $f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$that satisfy $f(m f(n))=n+f(2015 m)$ for all $m, n \in \mathbb{Z}_{+}$.
2 Consider a triangle $\triangle A B C$, let the incircle centered at I touch the sides $B C, C A, A B$ at points D, E, F respectively. Let the angle bisector of $\angle B I C$ meet $B C$ at M, and the angle bisector of $\angle E D F$ meet $E F$ at N. Prove that A, M, N are collinear.

3 Let p be a fixed odd prime. Find the minimum positive value of $E_{p}(x, y)=\sqrt{2 p}-\sqrt{x}-\sqrt{y}$ where $x, y \in \mathbb{Z}_{+}$.

4 In how many ways can we color exactly k vertices of an n-gon in red such that any 2 consecutive vertices are not both red. (Vertices are considered to be labeled)

Day 2

1 Let $c \in\left(0, \frac{\pi}{2}\right), a=\left(\frac{1}{\sin (c)}\right)^{\frac{1}{\cos ^{2}(c)}}, b=\left(\frac{1}{\cos (c)}\right)^{\frac{1}{\sin ^{2}(c)}}$.
Prove that at least one of a, b is bigger than $\sqrt[11]{2015}$.
2 Let a, b, c be positive real numbers such that $a b c=1$. Prove the following inequality: $a^{3}+b^{3}+c^{3}+\frac{a b}{a^{2}+b^{2}}+\frac{b c}{b^{2}+c^{2}}+\frac{c a}{c^{2}+a^{2}} \geq \frac{9}{2}$.

3 Consider an acute triangle $A B C$, points E, F are the feet of the perpendiculars from B and C in $\triangle A B C$. Points I and J are the projections of points F, E on the line $B C$, points K, L are on sides $A B, A C$ respectively such that $I K \| A C$ and $J L \| A B$. Prove that the lines $I E, J F, K L$ are concurrent.

4 Consider a positive integer n and $A=\{1,2, \ldots, n\}$. Call a subset $X \subseteq A$ perfect if $|X| \in X$. Call a perfect subset X minimal if it doesn't contain another perfect subset. Find the number of minimal subsets of A.

Day 3

1 Find all polynomials $P(x)$ with real coefficients which satisfies $P(2015)=2025$ and $P(x)-10=\sqrt{P\left(x^{2}+3\right)-13}$ for every $x \geq 0$.

2 Prove the equality:

$$
\tan \left(\frac{3 \pi}{7}\right)-4 \sin \left(\frac{\pi}{7}\right)=\sqrt{7}
$$

3 The tangents to the inscribed circle of $\triangle A B C$, which are parallel to the sides of the triangle and do not coincide with them, intersect the sides of the triangle in the points M, N, P, Q, R, S such that $M, S \in(A B), N, P \in(A C), Q, R \in(B C)$. The interior angle bisectors of $\triangle A M N$, $\triangle B S R$ and $\triangle C P Q$, from points A, B and respectively C have lengths l_{1}, l_{2} and l_{3}.

Prove the inequality: $\frac{1}{l_{1}^{2}}+\frac{1}{l_{2}^{2}}+\frac{1}{l_{3}^{2}} \geq \frac{81}{p^{2}}$ where p is the semiperimeter of $\triangle A B C$.
4 Let n and k be positive integers, and let be the sets $X=\{1,2,3, \ldots, n\}$ and $Y=\{1,2,3, \ldots, k\}$. Let P be the set of all the subsets of the set X. Find the number of functions $f: P \rightarrow Y$ that satisfy $f(A \cap B)=\min (f(A), f(B))$ for all $A, B \in P$.

