AoPS Community

Kosovo Team Selection Test 2015

www.artofproblemsolving.com/community/c57485
by arberiii

1 a)Prove that for every n, natural number exist natural numbers a and b such that $(1-\sqrt{2})^{n}=$ $a-b \sqrt{2}$ and $a^{2}-2 b^{2}=(-1)^{n}$
b)Using first equation prove that for every n exist m such that $(\sqrt{2}-1)^{n}=\sqrt{m}-\sqrt{m-1}$

2 Prove that circle $\mathrm{I}(0,2)$ with equation $x^{2}+y^{2}=4$ contains infinite points with rational coordinates

3 It's given system of equations $a_{11} x_{1}+a_{12} x_{2}+a_{1 n} x_{n}=b_{1} a_{21} x_{1}+a_{22} x_{2}+a_{2 n} x_{n}=b_{2}$ $a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n n} x_{n}=b_{n}$ such that $a_{11}, a_{12}, \ldots, a_{1 n}, b_{1}, a_{21}, a_{22}, \ldots, a_{2 n}, b_{2}, \ldots, a_{n 1}, a_{n 2}, \ldots, a_{n n}, b_{n}$, form an arithmetic sequence.If system has one solution find it

4 Let $P_{1}, P_{2}, \ldots, P_{2556}$ be distinct points inside a regular hexagon $A B C D E F$ of side 1 . If any three points from the set $S=\left\{A, B, C, D, E, F, P_{1}, P_{2} \ldots, P_{2556}\right\}$ aren't collinear, prove that there exists a triangle with area smaller than $\frac{1}{1700}$, with vertices from the set S.

5 In convex quadrilateral $A B C D$,diagonals $A C$ and $B D$ intersect at S and are perpendicular.
a) Prove that midpoints M, N, P, Q of $A D, A B, B C, C D$ form a rectangular
b)If diagonals of MNPQ intersect O and $A D=5, B C=10, A C=10, B D=11$ find value of $S O$

