AoPS Community

First Brazilian Math Olympiad
www.artofproblemsolving.com/community/c582047
by Johann Peter Dirichlet

1 Show that if $a<b$ are in the interval $\left[0, \frac{\pi}{2}\right]$ then $a-\sin a<b-\sin b$. Is this true for $a<b$ in the interval $\left[\pi, \frac{3 \pi}{2}\right]$?

2 The remainder on dividing the polynomial $p(x)$ by $x^{2}-(a+b) x+a b$ (where $a \neq b$) is $m x+n$. Find the coefficients m, n in terms of a, b. Find m, n for the case $p(x)=x^{200}$ divided by $x^{2}-x-2$ and show that they are integral.

3 The vertex C of the triangle $A B C$ is allowed to vary along a line parallel to $A B$. Find the locus of the orthocenter.

4 Show that the number of positive integer solutions to $x_{1}+2^{3} x_{2}+3^{3} x_{3}+\ldots+10^{3} x_{10}=3025$ (*) equals the number of non-negative integer solutions to the equation $y_{1}+2^{3} y_{2}+3^{3} y_{3}+\ldots+$ $10^{3} y_{10}=0$. Hence show that $(*)$ has a unique solution in positive integers and find it.

5

- ABCD is a square with side $1 . M$ is the midpoint of $A B$, and N is the midpoint of $B C$. The lines $C M$ and $D N$ meet at I. Find the area of the triangle $C I N$.
- The midpoints of the sides $A B, B C, C D, D A$ of the parallelogram $A B C D$ are M, N, P, Q respectively. Each midpoint is joined to the two vertices not on its side. Show that the area outside the resulting 8-pointed star is $\frac{2}{5}$ the area of the parallelogram.
$-A B C$ is a triangle with $C A=C B$ and centroid G. Show that the area of AGB is $\frac{1}{3}$ of the area of ABC.
- Is (ii) true for all convex quadrilaterals $A B C D$?

