

AoPS Community

1979 Brazil National Olympiad

First Brazilian Math Olympiad

www.artofproblemsolving.com/community/c582047 by Johann Peter Dirichlet

- 1 Show that if a < b are in the interval $\left[0, \frac{\pi}{2}\right]$ then $a \sin a < b \sin b$. Is this true for a < b in the interval $\left[\pi, \frac{3\pi}{2}\right]$?
- **2** The remainder on dividing the polynomial p(x) by $x^2 (a+b)x + ab$ (where $a \neq b$) is mx + n. Find the coefficients m, n in terms of a, b. Find m, n for the case $p(x) = x^{200}$ divided by $x^2 x 2$ and show that they are integral.
- **3** The vertex C of the triangle ABC is allowed to vary along a line parallel to AB. Find the locus of the orthocenter.
- 4 Show that the number of positive integer solutions to $x_1 + 2^3x_2 + 3^3x_3 + ... + 10^3x_{10} = 3025$ (*) equals the number of non-negative integer solutions to the equation $y_1 + 2^3y_2 + 3^3y_3 + ... + 10^3y_{10} = 0$. Hence show that (*) has a unique solution in positive integers and find it.
- 5

- ABCD is a square with side 1. M is the midpoint of AB, and N is the midpoint of BC. The lines CM and DN meet at I. Find the area of the triangle CIN.

- The midpoints of the sides AB, BC, CD, DA of the parallelogram ABCD are M, N, P, Q respectively. Each midpoint is joined to the two vertices not on its side. Show that the area outside the resulting 8-pointed star is $\frac{2}{5}$ the area of the parallelogram.

- ABC is a triangle with CA = CB and centroid G. Show that the area of AGB is $\frac{1}{3}$ of the area of ABC.

- Is (ii) true for all convex quadrilaterals ABCD?

AoPS Online 🔇 AoPS Academy 🔇 AoPS &